To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Transcendental number theory

From Wikipedia, the free encyclopedia

Transcendental number theory is a branch of number theory that investigates transcendental numbers (numbers that are not solutions of any polynomial equation with rational coefficients), in both qualitative and quantitative ways.

YouTube Encyclopedic

  • 1/5
    Views:
    2 065 472
    1 282
    292 112
    16 077
    65 728
  • Transcendental Numbers - Numberphile
  • Online Course # 1 - "Introduction to Transcendental Number Theory" by Michel Waldschmidt
  • Transcendental numbers powered by Cantor's infinities
  • Transcendental Numbers
  • Algebraic vs. Transcendental Numbers

Transcription

SIMON PAMPENA: It's mind blowing. I learned this when I was at uni, the existence of transcendental numbers. And the name was a selling point. Because I was like, transcendental. You know, it's a time when you're really interested in, like, out of body experiences and whatnot. But the idea that mathematicians gave this name to numbers, numbers, these are numbers that you're familiar with. Like pi, you can write down as a decimal expansion. You'll never get it right, but it's just a number that you're familiar with. Has this property that we just didn't know about. OK, we're going to play a game, and we're going to try and understand transcendental numbers with this game. The game is reducing down numbers to 0. That's what you want to do. So the rules are you can only use whole numbers to do it, and you can add, take, multiply, and put the whole thing to any power you like, but it has to be a whole number power. OK, so let's play the game. OK, so do you have a favorite number? BRADY HARAN: Well, I like the number 10. SIMON PAMPENA: 10? BRADY HARAN: Yeah, but that seems like quite an easy one. SIMON PAMPENA: Sure. That's fine. You mean 10 in base 10? BRADY HARAN: 10 in base 10. SIMON PAMPENA: Yeah, OK. So 10 in base 10. OK, here we go. Let's start the game. So we want to get this down to 0, so the first thing we could do is multiply it by 0. But that you can do with any number, because any number times 0 is-- BRADY HARAN: 0. SIMON PAMPENA: Bingo. You can do that, but that's not very interesting. But what is interesting is that if we try and use these rules, we can go, OK, what happens if I take away 10 from this? We're done. So there you go. So that sounds kind of trivial, but it's a really good start. So we used a whole number, and we used the take. What about something else? How about 3/4? First of all, let's multiply it by 4. OK, so these things will cancel. You get 3. Now we can take away 3, we'll get 0. Excellent. But what about something crazier? What about like a really crazy number? What about like, the square root of 2? I think you guys know about the square of 2. BRADY HARAN: Yes, we do. That's irrational, isn't it? SIMON PAMPENA: It's an irrational number, and irrational means it can't be expressed as a fraction. So the square root of 2 is kind of a very strange number, and so this little thing here, I often say this little thing here is like a little sentence. It says, what number multiplied by itself gives you this number? That's the way I think of the square root sign. So I don't know what number multiplied by itself gives me 2, but that doesn't matter. Now, what we'll do is to try and get this one down to 0, OK? First of all, we'll have to-- BRADY HARAN: OK, that, I reckon I can do that. SIMON PAMPENA: Well, tell me. BRADY HARAN: I reckon if we raise that to a power-- SIMON PAMPENA: Yep. What power? BRADY HARAN: Let's raise it to the power of 2? SIMON PAMPENA: Correct, so that's multiplying it by itself. And then what do you get in the middle? BRADY HARAN: You're going to get 2, I'd bet. SIMON PAMPENA: That's right. So now you've got 2 in there, so what are you going to do? BRADY HARAN: Subtract 2. SIMON PAMPENA: Yes! So look at that. So you've just taken an irrational number, and with this game you've brought it down to 0. How about the square root of negative 1? We've gone from numbers that you know and love to fractions, OK, to irrational. This is irrational numbers. Now we've gone into what they call complex, or some people call imaginary, which is a terrible name for it. OK, so what can you do to this one here to try and get it down to 0? BRADY HARAN: Well, I'm just going to square it and add 1. SIMON PAMPENA: There you go. No flies on you, mate. So there you go. So we've been able to play this game with three or four very different types of numbers, quite special. But what about something else? What about the square root of 2 plus the square root of 3? What can you do with that? So, let's see. The square root of 2 plus the square root of 3. Now we're gonna square it. OK, so this is a little bit of high school maths. 2 plus 2 times this by this, which is 2 the square root of 2 times square root of 3 plus this squared. So that's 3. So this reduces down to 5 plus 2 by the square root of 2 by the square root of 3. OK, so this is what we've done. We've done that there, but look what's popped out. A number that we can use, a whole number. So what we'll do is on this side, we'll go 5 plus 2 by the square root of 2 by the square root of 3, and now we'll take away 5. So we'll end up getting 2 by the square root of 2 by the square root of 3. And this is good, because there's no plus sign in the middle. What can we do next? Well, we're going to square all of that. So 2 squared is 4, and the square root of 2 squared is 2. And the square root of 3 squared is 3. OK, so that dot is another way of saying times. And so that one is 2/8, two 4's are eight, eight 3's 24, done. So if we go 24, take 24, boom, we get down to 0. What I wanted to show you, the reason why I wanted to show you this is because all these different numbers look very complicated, unrelated, but let me show you. Now, let's replace all the numbers we put in with x. x take 10 is 0, 4x take 3 is 0, x squared take 2 is 0, x squared plus 1 is 0, and this one is x squared take 5, all squared, take 24 equals 0, which if we expand out, so look. These all look like algebra problems. So what we did was in our game, we picked numbers, and we tried to get them to 0. But the opposite could have been here, let's solve for x. Now, this is the stuff that you get taught in school. This is algebra, and it so happens that the family that all these numbers belong to, even the square root of negative 1, is algebraic numbers. So we've actually found a home for some of the biggest stars of maths, the numbers that have caused huge problems and schisms, what is the square root of negative 1? Square root of 2 from the ancient times, the Pythagorean times. People died because of this number. But somehow we've found a family for these numbers, algebraic numbers. OK. So next, we're going to need another sheet of paper. We've chosen some numbers. What about a special number? What about e? Now this number here-- if you're not familiar with it-- this number is a fantastic number for maths. And what it is is that if it's a function, a function of e to the x, e to any number that you raise it to, OK? On the graph, when you graph it like so, the y value is also at the slope of the tangent at that point. So it's really, really important to natural growth. It's like a really fantastic number. It means a lot to life, really, but it's actually a super crazy number. Super, super crazy. One of the expressions I can show you for it is actually an infinite sum. So I'm going to blow you away. It's 1 plus 1 on 1 plus 1 on 2 plus 1 on 6 plus 1 on 20-- anyway, it keeps going forever and ever. But can we play the game with this number? Can we bring this number down to 0 using the rules of our game? BRADY HARAN: Can we do it with algebra? SIMON PAMPENA: Can we do it with algebra? That's right. BRADY HARAN: All right. Can we? SIMON PAMPENA: Well, for ages and ages and ages, e's been around for about 400 years. Nobody really knew. I mean, this number is really, really important, and no one knew. It so happens, we can't. BRADY HARAN: It can't be done. SIMON PAMPENA: It can't be done, and I'll show you why. Well, I'll kind of try and show you why, because it's actually really tricky. But it was a guy called Charles Hermite, and he basically showed-- right, so I'm going to use these symbols here, because I don't know what the formula will be. He basically showed if you try and play the game, right, bringing e to any power that you want, whole power and timesing it by any whole number. So if you claim that there does exist some bit of algebra that you can bring it down to 0, he showed that you'll lead to a contradiction. Basically, he showed that there was a number, a whole number that existed between 0 and 1. Obviously, there's not. Obviously, there's not. But this is what you do in maths, is that if you want to show you something is impossible, you kind of assume that it's true, and then you show that it creates a contradiction. So this is amazing. So this is what Hermite discovered, and this is really, really a fantastic-- I mean, everyone should be excited by this, because e is not algebraic. So what number is it? Well, it somehow transcends what we're capable of doing. The thing with algebra is that's how we build numbers. Like, that's our world is built with algebra. Like, any number that you kind of deal with in your everyday life has a lot to do with algebra. You're just adding, taking, dividing, things to the power, but e is not. So it somehow transcends maths. So that's what they called it. e is transcendental. It's actually [INAUDIBLE] show you other than e. You know why, is because-- well, this is the interesting thing. e wasn't the first transcendental number. They discovered a transcendental number, Liouville, I think his name is, discovered a transcendental number quite a long way before this, 30 years before this. But it was like, through construction. So he was actually trying to find a number based on the rules of the game that didn't fit. What's special is that e was already, it's already a superstar of maths, e. Like, people knew about it. So this was an extra piece of information. But then people asked this question. What about pi? BRADY HARAN: Superstar. SIMON PAMPENA: The superstar. This is the superstar of math. 2,000 years old. What is pi? Is pi algebraic or transcendental? So you've got to imagine as a mathematician, OK, you love pi. Like, it comes with the territory. You cannot not like pi. So this is the thing, is that you could actually add to the knowledge of pi. You could add something new, which is incredible. I mean, I would die a happy man if I could do that. So this question came up, what is pi? Is it algebraic or transcendental? And so it was about, probably 1880s that a guy called Lindemann actually came up with the answer. He showed, and again, this is a very tricky thing that he showed, he showed e raised to any algebraic number is transcendental. So for example, e to the 1, e. That's a good thing, because e should be transcendental, because it's already been proven. Because 1 is algebraic. Your favorite number, Brady, e to the 10. That's transcendental, right? e to the square root of 2, e to the i. Right? What about pi? So how could you use this fact here, e to the a, so a is any algebraic number, is transcendental? How can you use that fact to show that pi is transcendental? OK, so this is the thing. Again, it's a proof by contradiction. So, this is what he did. He said, let's assume pi is algebraic. So pi is algebraic. That means there's a formula for it. OK, what's that formula? Who knows? Because it doesn't exist. But as an example, if you're an engineer, you'd say, oh, yeah, pi, 22 on 7. All right? OK, cool. So that means pi times 7 take 22 equals 0. Right? As an example. That's not true, by the way. There's no way I'm claiming that to be true. Don't you dare cut it and say Simon thinks that's true. It's not true. Pi, 22 on 7. Pi, 22 on 7. I know pi to quite a few decimal places, and that's obviously not true. And an actual fact, just so I can tell you, another really nice approximation of pi is the cube root of 31. It's actually pretty close. So that could be another formula. So that means if we cube that and take away 31, that equals 0. OK, so we've got like these phony equations. This is the big kicker. This is the big kicker. We're going to use another superstar equation, OK? e to the i pi equals negative 1. So this is Euler's identity. It's a famous one, isn't it? But look at it. Look what it says. e raised to the i pi is negative 1. Now, i pi, OK, if we assume pi is algebraic, that means i pi must be algebraic. So e to an algebraic number has to be transcendental. But is negative 1 transcendental? It's not, because we can play the game, and we can get it to 0. So by using another increase piece of maths in your formula, imagine this is like you're making a film, like you're doing a maths film, and you've just got the biggest Hollywood star in the world to start in it. In your proof. Starring in your proof. So this here, e to the i pi is negative 1. If indeed this was algebraic, this would have to be transcendental, so that means i pi cannot be algebraic. And who's the culprit? Well, it's not the square root of negative 1. It's pi. So pi cannot be algebraic, which means pi must be transcendental. So there's something really tricky going on, and that's why I like it. Because the tricky stuff is where all the awesome maths is. In maths, perfection is important. But then, anyone who uses maths-- for physics or chemistry, or whatever you want to do-- then they can kind of use approximations. I'm not interested in approximations.

Transcendence

The fundamental theorem of algebra tells us that if we have a non-constant polynomial with rational coefficients (or equivalently, by clearing denominators, with integer coefficients) then that polynomial will have a root in the complex numbers. That is, for any non-constant polynomial with rational coefficients there will be a complex number such that . Transcendence theory is concerned with the converse question: given a complex number , is there a polynomial with rational coefficients such that If no such polynomial exists then the number is called transcendental.

More generally the theory deals with algebraic independence of numbers. A set of numbers {α1, α2, …, αn} is called algebraically independent over a field K if there is no non-zero polynomial P in n variables with coefficients in K such that P1, α2, …, αn) = 0. So working out if a given number is transcendental is really a special case of algebraic independence where n = 1 and the field K is the field of rational numbers.

A related notion is whether there is a closed-form expression for a number, including exponentials and logarithms as well as algebraic operations. There are various definitions of "closed-form", and questions about closed-form can often be reduced to questions about transcendence.

History

Approximation by rational numbers: Liouville to Roth

Use of the term transcendental to refer to an object that is not algebraic dates back to the seventeenth century, when Gottfried Leibniz proved that the sine function was not an algebraic function.[1] The question of whether certain classes of numbers could be transcendental dates back to 1748[2] when Euler asserted[3] that the number logab was not algebraic for rational numbers a and b provided b is not of the form b = ac for some rational c.

Euler's assertion was not proved until the twentieth century, but almost a hundred years after his claim Joseph Liouville did manage to prove the existence of numbers that are not algebraic, something that until then had not been known for sure.[4] His original papers on the matter in the 1840s sketched out arguments using continued fractions to construct transcendental numbers. Later, in the 1850s, he gave a necessary condition for a number to be algebraic, and thus a sufficient condition for a number to be transcendental.[5] This transcendence criterion was not strong enough to be necessary too, and indeed it fails to detect that the number e is transcendental. But his work did provide a larger class of transcendental numbers, now known as Liouville numbers in his honour.

Liouville's criterion essentially said that algebraic numbers cannot be very well approximated by rational numbers. So if a number can be very well approximated by rational numbers then it must be transcendental. The exact meaning of "very well approximated" in Liouville's work relates to a certain exponent. He showed that if α is an algebraic number of degree d ≥ 2 and ε is any number greater than zero, then the expression

can be satisfied by only finitely many rational numbers p/q. Using this as a criterion for transcendence is not trivial, as one must check whether there are infinitely many solutions p/q for every d ≥ 2.

In the twentieth century work by Axel Thue,[6] Carl Siegel,[7] and Klaus Roth[8] reduced the exponent in Liouville's work from d + ε to d/2 + 1 + ε, and finally, in 1955, to 2 + ε. This result, known as the Thue–Siegel–Roth theorem, is ostensibly the best possible, since if the exponent 2 + ε is replaced by just 2 then the result is no longer true. However, Serge Lang conjectured an improvement of Roth's result; in particular he conjectured that q2+ε in the denominator of the right-hand side could be reduced to .

Roth's work effectively ended the work started by Liouville, and his theorem allowed mathematicians to prove the transcendence of many more numbers, such as the Champernowne constant. The theorem is still not strong enough to detect all transcendental numbers, though, and many famous constants including e and π either are not or are not known to be very well approximable in the above sense.[9]

Auxiliary functions: Hermite to Baker

Fortunately other methods were pioneered in the nineteenth century to deal with the algebraic properties of e, and consequently of π through Euler's identity. This work centred on use of the so-called auxiliary function. These are functions which typically have many zeros at the points under consideration. Here "many zeros" may mean many distinct zeros, or as few as one zero but with a high multiplicity, or even many zeros all with high multiplicity. Charles Hermite used auxiliary functions that approximated the functions for each natural number in order to prove the transcendence of in 1873.[10] His work was built upon by Ferdinand von Lindemann in the 1880s[11] in order to prove that eα is transcendental for nonzero algebraic numbers α. In particular this proved that π is transcendental since eπi is algebraic, and thus answered in the negative the problem of antiquity as to whether it was possible to square the circle. Karl Weierstrass developed their work yet further and eventually proved the Lindemann–Weierstrass theorem in 1885.[12]

In 1900 David Hilbert posed his famous collection of problems. The seventh of these, and one of the hardest in Hilbert's estimation, asked about the transcendence of numbers of the form ab where a and b are algebraic, a is not zero or one, and b is irrational. In the 1930s Alexander Gelfond[13] and Theodor Schneider[14] proved that all such numbers were indeed transcendental using a non-explicit auxiliary function whose existence was granted by Siegel's lemma. This result, the Gelfond–Schneider theorem, proved the transcendence of numbers such as eπ and the Gelfond–Schneider constant.

The next big result in this field occurred in the 1960s, when Alan Baker made progress on a problem posed by Gelfond on linear forms in logarithms. Gelfond himself had managed to find a non-trivial lower bound for the quantity

where all four unknowns are algebraic, the αs being neither zero nor one and the βs being irrational. Finding similar lower bounds for the sum of three or more logarithms had eluded Gelfond, though. The proof of Baker's theorem contained such bounds, solving Gauss' class number problem for class number one in the process. This work won Baker the Fields medal for its uses in solving Diophantine equations. From a purely transcendental number theoretic viewpoint, Baker had proved that if α1, ..., αn are algebraic numbers, none of them zero or one, and β1, ..., βn are algebraic numbers such that 1, β1, ..., βn are linearly independent over the rational numbers, then the number

is transcendental.[15]

Other techniques: Cantor and Zilber

In the 1870s, Georg Cantor started to develop set theory and, in 1874, published a paper proving that the algebraic numbers could be put in one-to-one correspondence with the set of natural numbers, and thus that the set of transcendental numbers must be uncountable.[16] Later, in 1891, Cantor used his more familiar diagonal argument to prove the same result.[17] While Cantor's result is often quoted as being purely existential and thus unusable for constructing a single transcendental number,[18][19] the proofs in both the aforementioned papers give methods to construct transcendental numbers.[20]

While Cantor used set theory to prove the plenitude of transcendental numbers, a recent development has been the use of model theory in attempts to prove an unsolved problem in transcendental number theory. The problem is to determine the transcendence degree of the field

for complex numbers x1, ..., xn that are linearly independent over the rational numbers. Stephen Schanuel conjectured that the answer is at least n, but no proof is known. In 2004, though, Boris Zilber published a paper that used model theoretic techniques to create a structure that behaves very much like the complex numbers equipped with the operations of addition, multiplication, and exponentiation. Moreover, in this abstract structure Schanuel's conjecture does indeed hold.[21] Unfortunately it is not yet known that this structure is in fact the same as the complex numbers with the operations mentioned; there could exist some other abstract structure that behaves very similarly to the complex numbers but where Schanuel's conjecture doesn't hold. Zilber did provide several criteria that would prove the structure in question was C, but could not prove the so-called Strong Exponential Closure axiom. The simplest case of this axiom has since been proved,[22] but a proof that it holds in full generality is required to complete the proof of the conjecture.

Approaches

A typical problem in this area of mathematics is to work out whether a given number is transcendental. Cantor used a cardinality argument to show that there are only countably many algebraic numbers, and hence almost all numbers are transcendental. Transcendental numbers therefore represent the typical case; even so, it may be extremely difficult to prove that a given number is transcendental (or even simply irrational).

For this reason transcendence theory often works towards a more quantitative approach. So given a particular complex number α one can ask how close α is to being an algebraic number. For example, if one supposes that the number α is algebraic then can one show that it must have very high degree or a minimum polynomial with very large coefficients? Ultimately if it is possible to show that no finite degree or size of coefficient is sufficient then the number must be transcendental. Since a number α is transcendental if and only if P(α) ≠ 0 for every non-zero polynomial P with integer coefficients, this problem can be approached by trying to find lower bounds of the form

where the right hand side is some positive function depending on some measure A of the size of the coefficients of P, and its degree d, and such that these lower bounds apply to all P ≠ 0. Such a bound is called a transcendence measure.

The case of d = 1 is that of "classical" diophantine approximation asking for lower bounds for

.

The methods of transcendence theory and diophantine approximation have much in common: they both use the auxiliary function concept.

Major results

The Gelfond–Schneider theorem was the major advance in transcendence theory in the period 1900–1950. In the 1960s the method of Alan Baker on linear forms in logarithms of algebraic numbers reanimated transcendence theory, with applications to numerous classical problems and diophantine equations.

Mahler's classification

Kurt Mahler in 1932 partitioned the transcendental numbers into 3 classes, called S, T, and U.[23] Definition of these classes draws on an extension of the idea of a Liouville number (cited above).

Measure of irrationality of a real number

One way to define a Liouville number is to consider how small a given real number x makes linear polynomials |qx − p| without making them exactly 0. Here p, q are integers with |p|, |q| bounded by a positive integer H.

Let be the minimum non-zero absolute value these polynomials take and take:

ω(x, 1) is often called the measure of irrationality of a real number x. For rational numbers, ω(x, 1) = 0 and is at least 1 for irrational real numbers. A Liouville number is defined to have infinite measure of irrationality. Roth's theorem says that irrational real algebraic numbers have measure of irrationality 1.

Measure of transcendence of a complex number

Next consider the values of polynomials at a complex number x, when these polynomials have integer coefficients, degree at most n, and height at most H, with n, H being positive integers.

Let be the minimum non-zero absolute value such polynomials take at and take:

Suppose this is infinite for some minimum positive integer n. A complex number x in this case is called a U number of degree n.

Now we can define

ω(x) is often called the measure of transcendence of x. If the ω(x, n) are bounded, then ω(x) is finite, and x is called an S number. If the ω(x, n) are finite but unbounded, x is called a T number. x is algebraic if and only if ω(x) = 0.

Clearly the Liouville numbers are a subset of the U numbers. William LeVeque in 1953 constructed U numbers of any desired degree.[24] The Liouville numbers and hence the U numbers are uncountable sets. They are sets of measure 0.[25]

T numbers also comprise a set of measure 0.[26] It took about 35 years to show their existence. Wolfgang M. Schmidt in 1968 showed that examples exist. However, almost all complex numbers are S numbers.[27] Mahler proved that the exponential function sends all non-zero algebraic numbers to S numbers:[28][29] this shows that e is an S number and gives a proof of the transcendence of π. This number π is known not to be a U number.[30] Many other transcendental numbers remain unclassified.

Two numbers x, y are called algebraically dependent if there is a non-zero polynomial P in two indeterminates with integer coefficients such that P(xy) = 0. There is a powerful theorem that two complex numbers that are algebraically dependent belong to the same Mahler class.[24][31] This allows construction of new transcendental numbers, such as the sum of a Liouville number with e or π.

The symbol S probably stood for the name of Mahler's teacher Carl Ludwig Siegel, and T and U are just the next two letters.

Koksma's equivalent classification

Jurjen Koksma in 1939 proposed another classification based on approximation by algebraic numbers.[23][32]

Consider the approximation of a complex number x by algebraic numbers of degree ≤ n and height ≤ H. Let α be an algebraic number of this finite set such that |x − α| has the minimum positive value. Define ω*(x, H, n) and ω*(x, n) by:

If for a smallest positive integer n, ω*(x, n) is infinite, x is called a U*-number of degree n.

If the ω*(x, n) are bounded and do not converge to 0, x is called an S*-number,

A number x is called an A*-number if the ω*(x, n) converge to 0.

If the ω*(x, n) are all finite but unbounded, x is called a T*-number,

Koksma's and Mahler's classifications are equivalent in that they divide the transcendental numbers into the same classes.[32] The A*-numbers are the algebraic numbers.[27]

LeVeque's construction

Let

It can be shown that the nth root of λ (a Liouville number) is a U-number of degree n.[33]

This construction can be improved to create an uncountable family of U-numbers of degree n. Let Z be the set consisting of every other power of 10 in the series above for λ. The set of all subsets of Z is uncountable. Deleting any of the subsets of Z from the series for λ creates uncountably many distinct Liouville numbers, whose nth roots are U-numbers of degree n.

Type

The supremum of the sequence {ω(x, n)} is called the type. Almost all real numbers are S numbers of type 1, which is minimal for real S numbers. Almost all complex numbers are S numbers of type 1/2, which is also minimal. The claims of almost all numbers were conjectured by Mahler and in 1965 proved by Vladimir Sprindzhuk.[34]

Open problems

While the Gelfond–Schneider theorem proved that a large class of numbers was transcendental, this class was still countable. Many well-known mathematical constants are still not known to be transcendental, and in some cases it is not even known whether they are rational or irrational. A partial list can be found here.

A major problem in transcendence theory is showing that a particular set of numbers is algebraically independent rather than just showing that individual elements are transcendental. So while we know that e and π are transcendental that doesn't imply that e + π is transcendental, nor other combinations of the two (except eπ, Gelfond's constant, which is known to be transcendental). Another major problem is dealing with numbers that are not related to the exponential function. The main results in transcendence theory tend to revolve around e and the logarithm function, which means that wholly new methods tend to be required to deal with numbers that cannot be expressed in terms of these two objects in an elementary fashion.

Schanuel's conjecture would solve the first of these problems somewhat as it deals with algebraic independence and would indeed confirm that e + π is transcendental. It still revolves around the exponential function, however, and so would not necessarily deal with numbers such as Apéry's constant or the Euler–Mascheroni constant. Another extremely difficult unsolved problem is the so-called constant or identity problem.[35]

Notes

  1. ^ N. Bourbaki, Elements of the History of Mathematics Springer (1994).
  2. ^ Gelfond 1960, p. 2.
  3. ^ Euler, L. (1748). Introductio in analysin infinitorum. Lausanne.
  4. ^ The existence proof based on the different cardinalities of the real and the algebraic numbers was not possible before Cantor's first set theory article in 1874.
  5. ^ Liouville, J. (1844). "Sur les classes très étendues de quantités dont la valeur n'est ni algébrique ni même réductible à des irrationelles algébriques". Comptes rendus de l'Académie des Sciences de Paris. 18: 883–885, 910–911.; Journal Math. Pures et Appl. 16, (1851), pp.133–142.
  6. ^ Thue, A. (1909). "Über Annäherungswerte algebraischer Zahlen". J. Reine Angew. Math. 1909 (135): 284–305. doi:10.1515/crll.1909.135.284. S2CID 125903243.
  7. ^ Siegel, C. L. (1921). "Approximation algebraischer Zahlen". Mathematische Zeitschrift. 10 (3–4): 172–213. doi:10.1007/BF01211608.
  8. ^ Roth, K. F. (1955). "Rational approximations to algebraic numbers". Mathematika. 2 (1): 1–20. doi:10.1112/S0025579300000644. And "Corrigendum", p. 168, doi:10.1112/S002559300000826.
  9. ^ Mahler, K. (1953). "On the approximation of π". Proc. Akad. Wetensch. Ser. A. 56: 30–42.
  10. ^ Hermite, C. (1873). "Sur la fonction exponentielle". C. R. Acad. Sci. Paris. 77.
  11. ^ Lindemann, F. (1882). "Ueber die Zahl π". Mathematische Annalen. 20 (2): 213–225. doi:10.1007/BF01446522.
  12. ^ Weierstrass, K. (1885). "Zu Hrn. Lindemann's Abhandlung: 'Über die Ludolph'sche Zahl'". Sitzungber. Königl. Preuss. Akad. Wissensch. Zu Berlin. 2: 1067–1086.
  13. ^ Gelfond, A. O. (1934). "Sur le septième Problème de D. Hilbert". Izv. Akad. Nauk SSSR. 7: 623–630.
  14. ^ Schneider, T. (1935). "Transzendenzuntersuchungen periodischer Funktionen. I. Transzendend von Potenzen". Journal für die reine und angewandte Mathematik. 1935 (172): 65–69. doi:10.1515/crll.1935.172.65. S2CID 115310510.
  15. ^ A. Baker, Linear forms in the logarithms of algebraic numbers. I, II, III, Mathematika 13 ,(1966), pp.204–216; ibid. 14, (1967), pp.102–107; ibid. 14, (1967), pp.220–228, MR0220680
  16. ^ Cantor, G. (1874). "Ueber eine Eigenschaft des Inbegriffes aller reelen algebraischen Zahlen". J. Reine Angew. Math. (in German). 1874 (77): 258–262. doi:10.1515/crll.1874.77.258. S2CID 199545885.
  17. ^ Cantor, G. (1891). "Ueber eine elementare Frage der Mannigfaltigkeitslehre". Jahresbericht der Deutschen Mathematiker-Vereinigung (in German). 1: 75–78.
  18. ^ Kac, M.; Stanislaw, U. (1968). Mathematics and Logic. Fredering A. Praeger. p. 13.
  19. ^ Bell, E. T. (1937). Men of Mathematics. New York: Simon & Schuster. p. 569.
  20. ^ Gray, R. (1994). "Georg Cantor and Transcendental Numbers" (PDF). American Mathematical Monthly. 101 (9): 819–832. doi:10.1080/00029890.1994.11997035. JSTOR 2975129.
  21. ^ Zilber, B. (2005). "Pseudo-exponentiation on algebraically closed fields of characteristic zero". Annals of Pure and Applied Logic. 132 (1): 67–95. doi:10.1016/j.apal.2004.07.001. MR 2102856.
  22. ^ Marker, D. (2006). "A remark on Zilber's pseudoexponentiation". Journal of Symbolic Logic. 71 (3): 791–798. doi:10.2178/jsl/1154698577. JSTOR 27588482. MR 2250821. S2CID 1477361.
  23. ^ a b Bugeaud 2012, p. 250.
  24. ^ a b LeVeque 2002, p. II:172.
  25. ^ Burger & Tubbs 2004, p. 170.
  26. ^ Burger & Tubbs 2004, p. 172.
  27. ^ a b Bugeaud 2012, p. 251.
  28. ^ LeVeque 2002, pp. II:174–186.
  29. ^ Burger & Tubbs 2004, p. 182.
  30. ^ Baker 1990, p. 86
  31. ^ Burger & Tubbs, p. 163.
  32. ^ a b Baker 1975, p. 87.
  33. ^ Baker 1990, p. 90.
  34. ^ Baker 1975, p. 86.
  35. ^ Richardson, D. (1968). "Some Undecidable Problems Involving Elementary Functions of a Real Variable". Journal of Symbolic Logic. 33 (4): 514–520. doi:10.2307/2271358. JSTOR 2271358. MR 0239976. S2CID 37066167.

References

Further reading

This page was last edited on 27 December 2023, at 02:42
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.