To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

trans-Cyclooctene

From Wikipedia, the free encyclopedia

trans-Cyclooctene[1]
Names
Preferred IUPAC name
(E)-Cyclooctene
Other names
trans-Cyclooctene
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
EC Number
  • 213-245-5
  • InChI=1S/C8H14/c1-2-4-6-8-7-5-3-1/h1-2H,3-8H2/b2-1+
    Key: URYYVOIYTNXXBN-OWOJBTEDSA-N
  • C1CCC/C=C/CC1
Properties
C8H14
Molar mass 110.200 g·mol−1
Appearance colorless liquid
Density 0.848 g/mL
Melting point −59 °C (−74 °F; 214 K)
Boiling point 143 °C (1 atm); 68-72 °C (100 torr)[2]
Hazards
GHS labelling:
GHS02: Flammable
GHS08: Health hazard
Danger
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

trans-Cyclooctene is a cyclic hydrocarbon with the formula [–(CH2)6CH=CH–], where the two C–C single bonds adjacent to the double bond are on opposite sides of the latter's plane. It is a colorless liquid with a disagreeable odor.

Cyclooctene is notable as the smallest cycloalkene that is readily isolated as its trans-isomer. The cis-isomer is much more stable;[3] the ring-strain energies being 16.7 and 7.4 kcal/mol, respectively.[4]

cis-Cyclooctene
in chair conformation
(Rp)-trans-Cyclooctene
in crown conformation

A planar arrangement of the ring carbons would be too strained, and therefore the stable conformations of the trans form have a bent (non-planar) ring. Computations indicate that the most stable "crown" conformation has the carbon atoms alternately above and below the plane of the ring.[5] A "half-chair" conformation, with about 6 kcal/mol higher energy, has carbons 2,3,5,6, and 8 on the same side of the plane of carbons 1,4, and 7.[5]

All conformations of trans-cyclooctene are chiral (specifically, what some call planar-chiral[6]) and the enantiomers can be separated.[7][8][9] In theory, conversion of between the enantiomers can be done, without breaking any bonds, by twisting the whole –CH=CH– group, rigidly, by 180 degrees. However, that entails passing one of its hydrogens through the crowded ring.[7]

YouTube Encyclopedic

  • 1/3
    Views:
    10 018
    3 244
    15 887
  • Recognizing chiral molecules with zero chiral centers
  • Stereoisomerism ( Atropisomerism) of Biaryl (CHE)
  • Ozonolysis of Alkenes - Oxidative Cleavage of Cycloalkenes With O3 & Backwards

Transcription

Preparation

trans-Cyclooctene was first synthesized on a preparatory scale by Arthur C. Cope with a Hofmann elimination reaction of N,N,N-trimethylcyclooctylammonium iodide.[10] The reaction gives a mixture of cis and trans isomers, and the trans isomer is selectively trapped as a complex with silver nitrate.

Other methods exist where the trans isomer is synthesized from the cis isomer in several synthetic steps. For instance, it can be prepared in almost 100% yield by converting the cis isomer to 1,2-epoxycyclooctane ("cyclooctene oxide") followed by reactions with lithium diphenylphosphide (LiPPh
2
) and with methyl iodide CH
3
I
. (Similar procedures can give cis,trans isomers of 1,4-cyclooctadiene and 1,5-cyclooctadiene).[2]

In addition, a photochemical method exists for the direct cistrans isomerisation. Although this equilibrium strongly favours the more stable cis form, the reaction can be driven towards the trans form by trapping with silver ions.[11][12]

Reactions

Because of the higher internal strain on the double bond, the trans isomer is more reactive than the cis isomer and of typical unsaturated hydrocarbons. For instance, its double bond will rapidly add tetrazine and its derivatives.[5] The compound also readily polymerizes with a ruthenium-based initiator.[4]

References

  1. ^ "cis-Cyclooctene". Sigma-Aldrich.
  2. ^ a b Vedejs, Edwin; Snoble, Karel A. J.; Fuchs, Philip L. (1973). "Phosphorus betaines derived from cycloheptene and cyclooctene oxides. Inversion of cyclooctene". Journal of Organic Chemistry. 38 (6): 1178–1183. doi:10.1021/jo00946a024.
  3. ^ Neuenschwander, Ulrich; Hermans, Ive (2011). "The conformations of cyclooctene: Consequences for epoxidation chemistry". Journal of Organic Chemistry. 76 (24): 10236–10240. doi:10.1021/jo202176j. PMID 22077196.
  4. ^ a b Walker, Ron; Conrad, Rosemary M.; Grubbs, Robert H. (2009). "The Living ROMP of trans-Cyclooctene". Macromolecules. 42 (3): 599–605. Bibcode:2009MaMol..42..599W. doi:10.1021/ma801693q. PMC 2850575. PMID 20379393.
  5. ^ a b c Selvaraj, Ramajeyam; Fox, Joseph M. (2013). "trans-Cyclooctene — A stable, voracious dienophile for bioorthogonal labeling". Current Opinion in Chemical Biology. 17 (5): 753–760. doi:10.1016/j.cbpa.2013.07.031. PMC 3925366. PMID 23978373.
  6. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Planar chirality". doi:10.1351/goldbook.P04681
  7. ^ a b Cope, Arthur C.; Ganellin, C. R.; Johnson, H. W.; Van Auken, T. V.; Winkler, Hans J. S. (1963). "Molecular Asymmetry of Olefins. I. Resolution of trans-Cyclooctene1-3". Journal of the American Chemical Society. 85 (20): 3276–3279. doi:10.1021/ja00903a049.
  8. ^ Cope, Arthur C.; Mehta, Anil S. (1964). "Molecular Asymmetry of Olefins. II. The Absolute Configuration of trans-Cyclooctene". Journal of the American Chemical Society. 86 (24): 5626–5630. doi:10.1021/ja01078a044.
  9. ^ Steven D. Paget (2001). "(−)-Dichloro(ethylene)(α-methylbenzylamine)platinum(II)". Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons. doi:10.1002/047084289X.rd119. ISBN 0-471-93623-5.
  10. ^ Cope, Arthur C.; Bach, Robert D. (1969). "trans-Cyclooctene". Organic Syntheses. 49: 39.; Collective Volume, vol. 5, p. 315
  11. ^ Swenton, John S. (1969). "Photoisomerization of cis-cyclooctene to trans-cyclooctene". Journal of Organic Chemistry. 34 (10): 3217–3218. doi:10.1021/jo01262a102.
  12. ^ Royzen, Maksim; Yap, Glenn P. A.; Fox, Joseph M. (2008). "A photochemical synthesis of functionalized trans-cyclooctenes driven by metal complexation". Journal of the American Chemical Society. 130 (12): 3760–3761. doi:10.1021/ja8001919. PMID 18321114.
This page was last edited on 30 September 2023, at 17:29
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.