To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Toroidal and poloidal coordinates

From Wikipedia, the free encyclopedia

A diagram depicting the poloidal (θ) direction, represented by the red arrow, and the toroidal (ζ or φ) direction, represented by the blue arrow.

The terms toroidal and poloidal refer to directions relative to a torus of reference. They describe a three-dimensional coordinate system in which the poloidal direction follows a small circular ring around the surface, while the toroidal direction follows a large circular ring around the torus, encircling the central void.

The earliest use of these terms cited by the Oxford English Dictionary is by Walter M. Elsasser (1946) in the context of the generation of the Earth's magnetic field by currents in the core, with "toroidal" being parallel to lines of latitude and "poloidal" being in the direction of the magnetic field (i.e. towards the poles).

The OED also records the later usage of these terms in the context of toroidally confined plasmas, as encountered in magnetic confinement fusion. In the plasma context, the toroidal direction is the long way around the torus, the corresponding coordinate being denoted by z in the slab approximation or ζ or φ in magnetic coordinates; the poloidal direction is the short way around the torus, the corresponding coordinate being denoted by y in the slab approximation or θ in magnetic coordinates. (The third direction, normal to the magnetic surfaces, is often called the "radial direction", denoted by x in the slab approximation and variously ψ, χ, r, ρ, or s in magnetic coordinates.)

Example

As a simple example from the physics of magnetically confined plasmas, consider an axisymmetric system with circular, concentric magnetic flux surfaces of radius (a crude approximation to the magnetic field geometry in an early tokamak but topologically equivalent to any toroidal magnetic confinement system with nested flux surfaces) and denote the toroidal angle by and the poloidal angle by . Then the toroidal/poloidal coordinate system relates to standard Cartesian coordinates by these transformation rules:

where .

The natural choice geometrically is to take , giving the toroidal and poloidal directions shown by the arrows in the figure above, but this makes a left-handed curvilinear coordinate system. As it is usually assumed in setting up flux coordinates for describing magnetically confined plasmas that the set forms a right-handed coordinate system, , we must either reverse the poloidal direction by taking , or reverse the toroidal direction by taking . Both choices are used in the literature.

Kinematics

To study single particle motion in toroidally confined plasma devices, velocity and acceleration vectors must be known. Considering the natural choice , the unit vectors of toroidal and poloidal coordinates system can be expressed as:

according to Cartesian coordinates. The position vector is expressed as:

The velocity vector is then given by:

and the acceleration vector is:

See also

References

  • "Oxford English Dictionary Online". poloidal. Oxford University Press. Retrieved 2007-08-10.
  • Elsasser, W. M. (1946). "Induction Effects in Terrestrial Magnetism, Part I. Theory". Phys. Rev. 69 (3–4): 106–116. doi:10.1103/PhysRev.69.106. Retrieved 2007-08-10.
This page was last edited on 30 December 2023, at 14:19
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.