To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Timeline of science and engineering in the Muslim world

From Wikipedia, the free encyclopedia

This timeline of science and engineering in the Muslim world covers the time period from the eighth century AD to the introduction of European science to the Muslim world in the nineteenth century. All year dates are given according to the Gregorian calendar except where noted.

YouTube Encyclopedic

  • 1/5
    Views:
    372 384
    33 540
    1 096 036
    1 327 914
    1 418 224
  • How The Islamic Golden Age of Science Changed History As We Know It
  • 10 Muslim Scientists Who Changed The World 🌍 | Explained
  • The Medieval Islamicate World: Crash Course History of Science #7
  • The rise and fall of the medieval Islamic Empire - Petra Sijpesteijn & Birte Kristiansen
  • Islamic Golden Age - Philosophy and Humanities

Transcription

Eighth Century

Astronomers and astrologers
Biologists, neuroscientists, and psychologists
Mathematics
  • 780 – 850: al-Khwarizmi Developed the "calculus of resolution and juxtaposition" (hisab al-jabr w'al-muqabala), more briefly referred to as al-jabr, or algebra.

Ninth Century

The Conica of Apollonius of Perga, "the great geometer", translated into Arabic in the ninth century
Chemistry
  • 801 – 873: al-Kindi writes on the distillation of wine as that of rose water and gives 107 recipes for perfumes, in his book Kitab Kimia al-'otoor wa al-tas`eedat (book of the chemistry of perfumes and distillations.)[citation needed]
  • 865 – 925: al-Razi wrote on Naft (naphta or petroleum) and its distillates in his book "Kitab sirr al-asrar" (book of the secret of secrets.) When choosing a site to build Baghdad's hospital, he hung pieces of fresh meat in different parts of the city. The location where the meat took the longest to rot was the one he chose for building the hospital. Advocated that patients not be told their real condition so that fear or despair do not affect the healing process. Wrote on alkali, caustic soda, soap and glycerine. Gave descriptions of equipment processes and methods in his book Kitab al-Asrar (book of secrets).
Mathematics
Miscellaneous

Tenth Century

By this century, three systems of counting are used in the Arab world. Finger-reckoning arithmetic, with numerals written entirely in words, used by the business community; the sexagesimal system, a remnant originating with the Babylonians, with numerals denoted by letters of the arabic alphabet and used by Arab mathematicians in astronomical work; and the Indian numeral system, which was used with various sets of symbols. Its arithmetic at first required the use of a dust board (a sort of handheld blackboard) because "the methods required moving the numbers around in the calculation and rubbing some out as the calculation proceeded."

Chemistry
Mathematics
  • 920: al-Uqlidisi. Modified arithmetic methods for the Indian numeral system to make it possible for pen and paper use. Hitherto, doing calculations with the Indian numerals necessitated the use of a dust board as noted earlier.
  • 940: Born Abu'l-Wafa al-Buzjani. Wrote several treatises using the finger-counting system of arithmetic and was also an expert on the Indian numerals system. About the Indian system, he wrote: "[It] did not find application in business circles and among the population of the Eastern Caliphate for a long time."[1] Using the Indian numeral system, abu'l Wafa was able to extract roots.
  • 980: al-Baghdadi Studied a slight variant of Thabit ibn Qurra's theorem on amicable numbers.[1] Al-Baghdadi also wrote about and compared the three systems of counting and arithmetic used in the region during this period.

Eleventh Century

Mathematics

Twelfth Century

Cartography
Mathematics
  • 1130–1180: Al-Samawal. An important member of al-Karaji's school of algebra. Gave this definition of algebra: "[it is concerned] with operating on unknowns using all the arithmetical tools, in the same way as the arithmetician operates on the known."[1]
  • 1135: Sharaf al-Din al-Tusi. Follows al-Khayyam's application of algebra of geometry, rather than follow the general development that came through al-Karaji's school of algebra. Wrote a treatise on cubic equations which [2][page needed] describes thus: "[the treatise] represents an essential contribution to another algebra which aimed to study curves by means of equations, thus inaugurating the beginning of algebraic geometry." (quoted in [1] ).

Thirteenth Century

Chemistry
Mathematics
Astronomy
Manuscript of al-Mulakhkhas fi al-Hay’ah in the Khalili Collection of Islamic Art
  • Jaghmini completed the al-Mulakhkhas fi al-Hay’ah ("Epitome of plain theoretical astronomy"), an astronomical textbook which spawned many commentaries and whose educational use lasted until the 18th century.[4]
Miscellaneous
  • Mechanical engineering: Ismail al-Jazari described 100 mechanical devices, some 80 of which are trick vessels of various kinds, along with instructions on how to construct them.
  • Medicine; Scientific method: Ibn Al-Nafis (1213–1288) Damascene physician and anatomist. Discovered the lesser circulatory system (the cycle involving the ventricles of the heart and the lungs) and described the mechanism of breathing and its relation to the blood and how it nourishes on air in the lungs. Followed a "constructivist" path of the smaller circulatory system: "blood is purified in the lungs for the continuance of life and providing the body with the ability to work". During his time, the common view was that blood originates in the liver then travels to the right ventricle, then on to the organs of the body; another contemporary view was that blood is filtered through the diaphragm where it mixes with the air coming from the lungs. Ibn al-Nafis discredited all these views including ones by Galen and Avicenna (ibn Sina). At least an illustration of his manuscript is still extant. William Harvey explained the circulatory system without reference to ibn al-Nafis in 1628. Ibn al-Nafis extolled the study of comparative anatomy in his "Explaining the dissection of [Avicenna's] Al-Qanoon" which includes a preface, and citations of sources. Emphasized the rigours of verification by measurement, observation and experiment. Subjected conventional wisdom of his time to a critical review and verified it with experiment and observation, discarding errors.[citation needed]

Fourteenth Century

Astronomy
Mathematics
  • 1380–1429: al-Kashi. According to,[1] "contributed to the development of decimal fractions not only for approximating algebraic numbers, but also for real numbers such as pi. His contribution to decimal fractions is so major that for many years he was considered as their inventor. Although not the first to do so, al-Kashi gave an algorithm for calculating nth roots which is a special case of the methods given many centuries later by Ruffini and Horner."

Fifteenth Century

Mathematics
  • Ibn al-Banna and al-Qalasadi used symbols for mathematics "and, although we do not know exactly when their use began, we know that symbols were used at least a century before this."[1]

Seventeenth century

Mathematics
  • The Arabic mathematician Mohammed Baqir Yazdi discovered the pair of amicable numbers 9,363,584 and 9,437,056 for which he is jointly credited with Descartes.[3]
  • A 17th century celestial globe was made by Diya’ ad-din Muhammad in Lahore, 1663 (now in Pakistan).[5] It is now housed at the National Museum of Scotland. It is encircled by a meridian ring and a horizon ring.[6] The latitude angle of 32° indicates that the globe was made in the Lahore workshop.[7] This specific 'workshop claims 21 signed globes—the largest number from a single shop’ making this globe a good example of Celestial Globe production at its peak.[8]

See also

References

Citations

  1. ^ a b c d e f g Arabic Mathematics at the University of St-Andrews, Scotland
  2. ^ Rashed, R (1994). The development of Arabic mathematics: between arithmetic and algebra. London, England.{{cite book}}: CS1 maint: location missing publisher (link)
  3. ^ a b "Various AP Lists and Statistics". Archived from the original on 28 July 2012. Retrieved 9 November 2006.
  4. ^ Ragep, Sally P. (2007). "Jaghmīnī: Sharaf al‐Dīn Maḥmūd ibn Muḥammad ibn ʿUmar al‐Jaghmīnī al‐Khwārizmī". In Thomas Hockey; et al. (eds.). The Biographical Encyclopedia of Astronomers. New York: Springer. pp. 584–5. ISBN 978-0-387-31022-0. (PDF version)
  5. ^ "Celestial globe". National Museums Scotland. Retrieved 15 October 2020.
  6. ^ Savage-Smith, Emilie (1985). Islamicate Celestial Globes: Their History, Construction, and Use. Washington, D.C.: Smithsonian Institution Press. p. 67.
  7. ^ Savage-Smith, Emilie (1985). Islamicate Celestial Globes: Their History, Construction, and Use. Washington, D.C.: Smithsonian Institution Press. p. 69.
  8. ^ Savage-Smith, Emilie (1985). Islamicate Celestial Globes: Their History, Construction, and Use. Washington, D.C.: Smithsonian Institution Press. p. 43.

Sources

External links

This page was last edited on 4 April 2024, at 03:47
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.