To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Thomas F. Bloom is a mathematician, who is a Royal Society University Research Fellow at the University of Oxford.[1][2] He works in arithmetic combinatorics and analytic number theory.

Education and career

Thomas did his undergraduate degree in Mathematics and Philosophy at Merton College, Oxford. He then went on to do his PhD in mathematics at the University of Bristol under the supervision of Trevor Wooley. After finishing his PhD, he was a Heilbronn Research Fellow at the University of Bristol. In 2018, he became a postdoctoral research fellow at the University of Cambridge with Timothy Gowers. In 2021, he joined the University of Oxford as a Research Fellow.[3]

Research

In July 2020, Bloom and Sisask[4] proved that any set such that diverges must contain arithmetic progressions of length 3. This is the first non-trivial case of a conjecture of Erdős postulating that any such set must in fact contain arbitrarily long arithmetic progressions.[5][6]

In November 2020, in joint work with James Maynard,[7] he improved the best-known bound for square-difference-free sets, showing that a set with no square difference has size at most for some .

In December 2021, he proved [8] that any set of positive upper density contains a finite  such that . This answered a question of Erdős and Graham.[9]

References

  1. ^ "Thomas Bloom | Mathematical Institute". www.maths.ox.ac.uk. Retrieved 2022-07-28.
  2. ^ Cepelewicz, Jordana (2022-03-09). "Math's 'Oldest Problem Ever' Gets a New Answer". Quanta Magazine. Retrieved 2022-07-28.
  3. ^ "Thomas Bloom". thomasbloom.org. Retrieved 2022-07-28.
  4. ^ Bloom, Thomas F.; Sisask, Olof (2021-09-01). "Breaking the logarithmic barrier in Roth's theorem on arithmetic progressions". arXiv:2007.03528 [math.NT].
  5. ^ Spalding, Katie (11 March 2022). "Math Problem 3,500 Years In The Making Finally Gets A Solution". IFLScience. Retrieved 28 July 2022.
  6. ^ Klarreich, Erica (3 August 2020). "Landmark Math Proof Clears Hurdle in Top Erdős Conjecture". Quanta Magazine. Retrieved 28 July 2022.
  7. ^ Bloom, Thomas F.; Maynard, James (24 February 2021). "A new upper bound for sets with no square differences". arXiv:2011.13266 [math.NT].
  8. ^ Bloom, Thomas F. (2021-12-07). "On a density conjecture about unit fractions". arXiv:2112.03726v2 [math.NT].
  9. ^ Erdos, P.; Graham, R. (1980). "Old and new problems and results in combinatorial number theory". Semantic Scholar. Université de Genève: L'Enseignement Mathématique. Retrieved 23 April 2024.
This page was last edited on 23 April 2024, at 07:24
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.