To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

From Wikipedia, the free encyclopedia

A lens may be considered a thin lens if its thickness is much less than the radii of curvature of its surfaces (d ≪ |R1| and d ≪ |R2|).
A lens may be considered a thin lens if its thickness is much less than the radii of curvature of its surfaces (d ≪ |R1| and d ≪ |R2|).

In optics, a thin lens is a lens with a thickness (distance along the optical axis between the two surfaces of the lens) that is negligible compared to the radii of curvature of the lens surfaces. Lenses whose thickness is not negligible are sometimes called thick lenses.

The thin lens approximation ignores optical effects due to the thickness of lenses and simplifies ray tracing calculations. It is often combined with the paraxial approximation in techniques such as ray transfer matrix analysis.

Focal length

The focal length, f, of a lens in air is given by the lensmaker's equation:

where n is the index of refraction of the lens material, and R1 and R2 are the radii of curvature of the two surfaces. For a thin lens, d is much smaller than one of the radii of curvature (either R1 or R2). In these conditions, the last term of the Lensmaker's equation becomes negligible, and the focal length of a thin lens in air can be approximated by[1]

Here R1 is taken to be positive if the first surface is convex, and negative if the surface is concave. The signs are reversed for the back surface of the lens: R2 is positive if the surface is concave, and negative if it is convex. This is an arbitrary sign convention; some authors choose different signs for the radii, which changes the equation for the focal length.

Image formation

Certain rays follow simple rules when passing through a thin lens, in the paraxial ray approximation:

  • Any ray that enters parallel to the axis on one side of the lens proceeds towards the focal point F on the other side.
  • Any ray that arrives at the lens after passing through the focal point on the front side, comes out parallel to the axis on the other side.
  • Any ray that passes through the center of the lens will not change its direction.

By tracing these rays, the relationship between the object distance s and the image distance s′ can be shown to be


which is known as the thin lens equation.

Physical optics

In scalar wave optics a lens is a part which shifts the phase of the wave-front. Mathematically this can be understood as a multiplication of the wave-front with the following function:[2]



  1. ^ Hecht, Eugene (1987). Optics (2nd ed.). Addison Wesley. § 5.2.3. ISBN 0-201-11609-X.
  2. ^ Saleh, B.E.A. (2007). Fundamentals of Photonics (2nd ed.). Wiley.
This page was last edited on 2 December 2020, at 03:44
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.