To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Thermal reservoir

From Wikipedia, the free encyclopedia

A thermal reservoir, also thermal energy reservoir or thermal bath, is a thermodynamic system with a heat capacity so large that the temperature of the reservoir changes relatively little when a significant amount of heat is added or extracted.[1] As a conceptual simplification, it effectively functions as an infinite pool of thermal energy at a given, constant temperature. Since it can act as an inertial source and sink of heat, it is often also referred to as a heat reservoir or heat bath.

Lakes, oceans and rivers often serve as thermal reservoirs in geophysical processes, such as the weather. In atmospheric science, large air masses in the atmosphere often function as thermal reservoirs.

Since the temperature of a thermal reservoir T does not change during the heat transfer, the change of entropy in the reservoir is

The microcanonical partition sum of a heat bath of temperature T has the property

where is the Boltzmann constant. It thus changes by the same factor when a given amount of energy is added. The exponential factor in this expression can be identified with the reciprocal of the Boltzmann factor.

For an engineering application, see geothermal heat pump.

YouTube Encyclopedic

  • 1/3
    Views:
    4 942
    6 635
    1 806
  • Thermal Reservoir in 2 minutes | Thermo Quickies
  • Thermal Reservoirs (Imp)
  • Thermal Energy Reservoir, Source, Sink, Heat Engine, Efficiency, Refrigerator, Heat Pump & COP

Transcription

See also

References

  1. ^ C, Yunus A.; Boles, Michael A. (2002). Thermodynamics: An Engineering Approach. Boston: McGraw-Hill. p. 247. ISBN 0-07-121688-X.


This page was last edited on 27 February 2024, at 18:11
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.