To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

# Texas sharpshooter fallacy

The Texas sharpshooter fallacy is an informal fallacy which is committed when differences in data are ignored, but similarities are overemphasized. From this reasoning, a false conclusion is inferred.[1] This fallacy is the philosophical or rhetorical application of the multiple comparisons problem (in statistics) and apophenia (in cognitive psychology). It is related to the clustering illusion, which is the tendency in human cognition to interpret patterns where none actually exist.

The name comes from a joke about a Texan who fires some gunshots at the side of a barn, then paints a target centered on the tightest cluster of hits and claims to be a sharpshooter.[2][3][4]

## Structure

A set of 100 randomly generated coordinates displayed on a scatter graph. Examining the points it is easy to identify apparent patterns. In particular, random data points do not spread out but cluster, giving the impression of "hot spots" created by some underlying cause.

The Texas sharpshooter fallacy often arises when a person has a large amount of data at their disposal, but only focuses on a small subset of that data. Some factor other than the one attributed may give all the elements in that subset some kind of common property (or pair of common properties, when arguing for correlation). If the person attempts to account for the likelihood of finding some subset in the large data with some common property by a factor other than its actual cause, then that person is likely committing a Texas sharpshooter fallacy.

The fallacy is characterized by a lack of a specific hypothesis prior to the gathering of data, or the formulation of a hypothesis only after data have already been gathered and examined.[5] Thus, it typically does not apply if one had an ex ante, or prior, expectation of the particular relationship in question before examining the data. For example, one might, prior to examining the information, have in mind a specific physical mechanism implying the particular relationship. One could then use the information to give support or cast doubt on the presence of that mechanism. Alternatively, if additional information can be generated using the same process as the original information, one can use the original information to construct a hypothesis, and then test the hypothesis on the new data. (See hypothesis testing.) What one cannot do is use the same information to construct and test the same hypothesis (see hypotheses suggested by the data)—to do so would be to commit the Texas sharpshooter fallacy.

## Examples

• A Swedish study in 1992 tried to determine whether power lines caused some kind of poor health effects. The researchers surveyed persons living within 300 meters of high-voltage power lines over a 25-year period and looked for statistically significant increases in rates of over 800 ailments. The study found that the incidence of childhood leukemia was four times higher among those who lived closest to the power lines, and it spurred calls to action by the Swedish government.[6] The problem with the conclusion, however, was that the number of potential ailments, i.e., over 800, was so large that it created a high probability that at least one ailment would exhibit the appearance of a statistically significant difference by chance alone; i.e., the multiple comparisons problem. Subsequent studies failed to show any association between power lines and childhood leukemia.[7]

### Translation and interpretation

• This fallacy is often found in modern-day interpretations of the quatrains of Nostradamus. Nostradamus's quatrains are often liberally translated from the original (archaic) French, stripped of their historical context, and then applied to support the conclusion that Nostradamus predicted a given modern-day event, after the event actually occurred.[8]

## References

1. ^ Bennett, Bo, "Texas sharpshooter fallacy", Logically Fallacious, retrieved 21 October 2014, description: ignoring the difference while focusing on the similarities, thus coming to an inaccurate conclusionCS1 maint: ref=harv (link)
2. ^ Barry Popik (2013-03-09). "Texas Sharpshooter Fallacy". barrypopik.com. Retrieved 2015-11-10.
3. ^ Atul Gawande (1999-08-02). "The cancer-cluster myth" (PDF). The New Yorker. Retrieved 2009-10-10.
4. ^ Carroll, Robert Todd (2003). The Skeptic's Dictionary: a collection of strange beliefs, amusing deceptions, and dangerous delusions. John Wiley & Sons. p. 375. ISBN 0-471-27242-6. Retrieved 2012-03-25. The term refers to the story of the Texan who shoots holes in the side of a barn and then draws a bull's-eye around the bullet holes
5. ^ Thompson, William C. (July 18, 2009). "Painting the target around the matching profile: the Texas sharpshooter fallacy in forensic DNA interpretation". Law, Probability, & Risk. 8 (3): 257–258. doi:10.1093/lpr/mgp013. Retrieved 2012-03-25. Texas sharpshooter fallacy...this article demonstrates how post hoc target shifting occurs and how it can distort the frequency and likelihood ratio statistics used to characterize DNA matches, making matches appear more probative than they actually are.