To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Technology during World War I

From Wikipedia, the free encyclopedia

The machine gun emerged as a decisive weapon during World War I. Picture: British Vickers machine gun crew on the Western Front.
The machine gun emerged as a decisive weapon during World War I. Picture: British Vickers machine gun crew on the Western Front.

Technology during World War I (1914–1918) reflected a trend toward industrialism and the application of mass-production methods to weapons and to the technology of warfare in general. This trend began at least fifty years prior to World War I during the American Civil War of 1861–1865,[1] and continued through many smaller conflicts in which soldiers and strategists tested new weapons.

British improvised weapons in Fort Reuenthal
British improvised weapons in Fort Reuenthal

World War I weapons included types standardised and improved over the preceding period, together with some newly developed types using innovative technology and a number of improvised weapons used in trench warfare. Military technology of the time included important innovations in grenades, poison gas, and artillery, along with essentially new weapons such as the submarine, warplane and tank.[2]

One could characterize the earlier years of the First World War as a clash of 20th-century technology with 19th-century military science creating ineffective battles with huge numbers of casualties on both sides. On land, only in the final year of the war did the major armies make effective steps in revolutionizing matters of command and control and tactics to adapt to the modern battlefield and start to harness the myriad new technologies to effective military purposes. Tactical reorganizations (such as shifting the focus of command from the 100+ man  company to the 10+ man squad) went hand-in-hand with armored cars, the first submachine guns, and automatic rifles that a single individual soldier could carry and use.

YouTube Encyclopedic

  • 1/5
    115 649
    3 097 108
    116 998
    2 110 108
    2 543 920
  • ✪ Technology in World War I | The 20th century | World history | Khan Academy
  • ✪ Weird Weapons and Equipment of WWI
  • ✪ WW1 - Weapons and Technology
  • ✪ Infantry Weapons of WWI
  • ✪ 10 Superweapons Currently Being Built


World War I shaped our world in many, many, many ways. And it's important to realize it wasn't that long ago. It was not even 100 years ago. But it was really the end of the more traditional empires. It was the end of kingdoms. It really reshaped much of the globe much more around states defined by nations rather than states defined by monarchies or states defined by empires. And it was also the first war where technology, or I would say modern technology-- technology has always played a major role in wars. In fact, wars have been a catalyst for technology often. But it was the first time that much of what we consider to be modern technology played a huge role in the actual carrying out of the war. And to a large degree, this is what made the war so much bloodier, and one could argue, even more protracted. So here I have a bunch of pictures of the various technologies used in World War I. Here in this picture you have a machine gun, which obviously allows you to indiscriminately mow down folks. These guys, it looks like they might be in some type of a trench. And so you could imagine that combination if viewed from above. So let's say that this is a trench. This is a trench right over here. We're looking from above. So there's some people sitting in the trench. A couple of these folks have machine guns. The rest of the guys just have rifles over here. If you wanted to storm this trench, you'd be in a bad situation. The guy with the machine gun essentially could just mow people down. They also tended to use barbed wire. Barbed wire wasn't invented in World War I. It was invented many decades before in the 1800s. But that would make it very hard for someone to cross this period. They would get stuck in it. At which point these guys in the trench could shoot him down. And it would be very hard to shoot the guys in the trench. So it also, other than making it very deadly, it gave all the advantages to the defense. So any time someone wanted to gain ground, especially in one of the fronts where trench warfare was being used, it was a hugely, hugely, hugely bloody affair. The other technology that came into mainstream use in World War I was the use of gas, and in particular poison gas. And as you see these gentleman right over here, they're wearing gas masks because they're afraid that their opponent is going to use poison gas. And the benefit of gas in particular is let's say you have an artillery shell that you throw over and it doesn't hit anybody. But then it starts releasing a canister of-- let me do that in a different color-- it starts releasing a canister of gas. So the gas I've drawn in this purplish color. And so it doesn't have to be a direct hit. It can just linger there and infect that trench. And it'll affect everyone there. And gas warfare was-- actually, the Germans weren't first to use just gas warfare. But they were the first to use very lethal, what we would call poison, gas. And in particular in 1915, they used chlorine gas. So let me write that down. Chlorine gas, which immediately attacks the respiratory system of the person who inhales it. And they essentially choke to death within seconds or minutes. They also used phosgene gas because this did not stimulate that choking. And in some ways it could infiltrate the respiratory system even more. It had a delayed effect. So it would linger around. And you have the use of mustard gas. Mustard gas was very hard to protect against. It wouldn't immediately have you choke to death like chlorine gas. It would be severe blistering. It would essentially take you out of the battle. It was very hard to protect against. And it would also linger around in the trench. So it made the trench a very toxic environment to work in. So these are very, very, very ugly weapons. I mean, war itself is ugly. Weapons themselves are ugly. I mean, the machine gun is not a pleasant weapon. It can mow people down. But even folks who view something like a machine gun as an acceptable thing tend to view these things as particularly ugly things to use. Other weapons that showed up in World War I, we talked about this in other videos, but the tank started to become a factor. This right over here is an American tank. Obviously, with these treads it can go in tough terrain. It's heavily, heavily armored. When you talk about this trench type of thing, well, if you've got a big hulking beast, maybe that could roll through the barbed wire and take some beating and maybe eventually-- so you could imagine a tank over here, it could eventually-- and actually the tanks at this time did not have these big turrets. So they might have looked something more like that. But this might be able to actually be part of an offensive against a trench like this. We've talked extensively about submarine warfare in World War I. The Germans especially used it, essentially to have a chance against the dominant British Navy. Unrestricted U-boat warfare was one of the primary reasons given by the Americans as to why they entered the war on the side of the entente. These are World War I era US submarines, just to give an idea of how they actually looked. And in some ways the best foreshadowing of what would play a major, major, major role in future wars it was the bringing of heavier than air craft into the war. So in particular, we're talking about airplanes. So before this, you had stuff like balloons and zeppelins used for reconnaissance, used to see where we should aim the artillery, things like that. But now you had the Wright brothers only, frankly, several years before inventing the engine powered heavier than air craft. And at first the airplane, in the beginning stages the war, was used for reconnaissance. But as the technology improved, as the engines improved, it started to be used for bombing. It started to actually used for air to air combat. And out of all of the folks involved in air to air combat, this gentleman right over here is probably the most famous. Although you might not recognize his name. He's been turned into a bit of a caricature in the modern world. But this is Manfred von Richthofen. And he was a pilot for the Germans. And he's more famously known as the Red Baron. And he was called the Red Baron because he was actually a Baron. It is a title of nobility in imperial Germany. And he painted his plane red. So this is a picture of his plane right over here. So if I were to color it in-- I guess this isn't quite red. I should actually probably try to get a more reddish color. So maybe this is more of a red. So this is obviously a black and white photograph, but maybe if I color it in for you, you'll get more of the feeling of what his plane might have looked like. And it was a triplane. It had these three wings right over here, or three levels of wings. So whatever, his plane was red. That's why he was called the Red Baron. And he was famous for being the most lethal pilot in all of the war. He has 80 confirmed kills. He was able to down 80 enemy aircraft. So 80 confirmed wins, I guess you can say in combat, which is more than any other folks in World War I. So very, very famous pilot. He himself-- when you're talking about any of the combatants in World War I did not have a long life expectancy. The pilots especially this was a dangerous game. And he also, despite being the top pilot, the top ace, amongst all the pilots in World War I, he also ended up getting shot in the air in 1918. He literally got shot through the lungs and the heart. He somehow managed to land his plane. And when the people ran up to him, the accounts say, that his famous last words as he died, right when they ran up to him, was "kaput". So interesting. And on top of that, he's now been turned into a bit of a caricature. I mean, us in the West, in the US, we recognize the brand Red Baron pizza. It is named for the Red Baron, for Manfred von Richthofen. Kind of a strange name, I think, for a pizza company. I mean, he's not even Italian. But that's, I guess, what we know him for. But you see, this guy right over here looks a lot more like Tom Selleck than look like the real Manfred von Richthofen.


Trench warfare

The new metallurgical and chemical industries created new firepower that briefly simplified defense before new approaches to attack evolved. The application of infantry rifles, rifled artillery with hydraulic recoil mechanisms, zigzag trenches and machine guns made it difficult or nearly impossible to cross defended ground. The hand grenade, long used in crude form, developed rapidly as an aid in attacking trenches. Probably the most important was the introduction of high explosive shells, which dramatically increased the lethality of artillery over the 19th-century equivalents.

Trench warfare led to the development of the concrete pill box, a small, hardened blockhouse that could be used to deliver machine gun fire. Pillboxes could be placed across a battlefield with interlocking fields of fire.[3]

Because attacking an entrenched enemy was so difficult, tunnel warfare became a major effort during the war. Once enemy positions were undermined, huge amounts of explosives would be planted and detonated as part preparation for an overland charge. Sensitive listening devices that could detect the sounds of digging were a crucial method of defense against these underground incursions. The British proved especially adept at these tactics, thanks to the skill of their tunnel-digging "sappers" and the sophistication of their listening devices.


German helmets went from leather to steel
German helmets went from leather to steel

The British and German armies had already changed from red coat (British army) (1902) or Prussian blue (1910) for field uniforms, to less conspicuous khaki or field gray. Adolphe Messimy, Joseph Gallieni and other French leaders had proposed following suit, but the French army marched to war in their traditional red trousers, and only began receiving the new "horizon blue" ones in 1915.

A type of raincoat for British officers, introduced long before the war, gained fame as the trench coat.

The principal armies entered the war under cloth caps or leather helmets. They hastened to develop new steel helmets, in designs that became icons of their respective countries.


French Canon de 75 modèle 1897 gave quick, accurate fire in a small, agile unit, but the Western Front often needed longer range
French Canon de 75 modèle 1897 gave quick, accurate fire in a small, agile unit, but the Western Front often needed longer range
German 7.7 cm FK 16, developed during the war because an earlier model had insufficient range
German 7.7 cm FK 16, developed during the war because an earlier model had insufficient range

In the 19th century, Britain and France exploited the rapid technical developments in artillery to serve a War of Movement. Such weapons served well in the colonial wars of that century, and served Germany very well in the Franco-Prussian War, but trench warfare was more like a siege, and called for siege guns. The German army had already anticipated that a European war might require heavier artillery, hence had a more appropriate mix of sizes. Foundries responded to the actual situation with more heavy products and fewer highly mobile pieces. Germany developed the Paris guns of stupendous size and range. However, the necessarily stupendous muzzle velocity wore out a gun barrel after a few shots requiring a return to the factory for relining, so these weapons served more to frighten and anger urban people than to kill them or devastate their cities.

At the beginning of the war, artillery was often sited in the front line to fire over open sights at enemy infantry. During the war, the following improvements were made:

Field artillery entered the war with the idea that each gun should be accompanied by hundreds of shells, and armories ought to have about a thousand on hand for resupply. This proved utterly inadequate when it became commonplace for a gun to sit in one place and fire a hundred shells or more per day for weeks or months on end. To meet the resulting Shell Crisis of 1915, factories were hastily converted from other purposes to make more ammunition. Railways to the front were expanded or built, leaving the question of the last mile. Horses in World War I were the main answer, and their high death rate seriously weakened the Central Powers late in the war. In many places the newly invented trench railways helped. The new motor trucks as yet lacked pneumatic tires, versatile suspension, and other improvements that in later decades would allow them to perform well.

The majority of casualties inflicted during the war were the result of artillery fire.

Poison gas

Australian infantry with gas masks, Ypres, 1917.
Australian infantry with gas masks, Ypres, 1917.

Chemical weapons were first used systematically in this war. Chemical weapons in World War I included phosgene, tear gas, chlorarsines and mustard gas.

At the beginning of the war, Germany had the most advanced chemical industry in the world, accounting for more than 80% of the world's dye and chemical production. Although the use of poison gas had been banned by the Hague Conventions of 1899 and 1907, Germany turned to this industry for what it hoped would be a decisive weapon to break the deadlock of trench warfare. Chlorine gas was first used on the battlefield in April 1915 at the Second Battle of Ypres in Belgium. The unknown gas appeared to be a simple smoke screen, used to hide attacking soldiers, and Allied troops were ordered to the front trenches to repel the expected attack. The gas had a devastating effect, killing many defenders or when the wind direction changed and blew the gas back, many attackers. Because the gas killed the attackers, depending on the wind, a more reliable way had to be made to transmit the gas. It began being delivered in artillery shells.[4][better source needed] Later, mustard gas, phosgene and other gases were used. Britain and France soon followed suit with their own gas weapons. The first defenses against gas were makeshift, mainly rags soaked in water or urine. Later, relatively effective gas masks were developed, and these greatly reduced the effectiveness of gas as a weapon. Although it sometimes resulted in brief tactical advantages and probably caused over 1,000,000 casualties, gas seemed to have had no significant effect on the course of the war.[citation needed]

Chemical weapons were easily attained, and cheap. Gas was especially effective against troops in trenches and bunkers that protected them from other weapons. Chemical weapons attacked an individual’s respiratory system. The concept of choking easily caused fear in soldiers and the resulting terror affected them psychologically. Because there was such a great fear of chemical weapons it wasn’t uncommon that a soldier would panic and misinterpret symptoms of the common cold as being affected by a poisonous gas.

Command and control

In the early days of the war, generals tried to direct tactics from headquarters many miles from the front, with messages being carried back and forth by couriers on motorcycles. It was soon realized that more immediate methods of communication were needed.

Radio sets of the period were too heavy to carry into battle, and field telephone lines laid were quickly broken. Runners, flashing lights, and mirrors were often used instead; dogs were also used, though they were only used occasionally as troops tended to adopt them as pets and men would volunteer to go as runners in the dog's place. There were also aircraft (called "contact patrols") that carried messages between headquarters and forward positions, sometimes dropping their messages without landing.

The new long-range artillery developed just before the war now had to fire at positions it could not see. Typical tactics were to pound the enemy front lines and then stop to let infantry move forward, hoping that the enemy line was broken, though it rarely was. The lifting and then the creeping barrage were developed to keep artillery fire landing directly in front of the infantry "as it advanced". Communications being impossible, the danger was that the barrage would move too fast — losing the protection — or too slowly — holding up the advance.

There were also countermeasures to these artillery tactics: by aiming a counter barrage directly behind an enemy's creeping barrage, one could target the infantry that was following the creeping barrage. Microphones (Sound ranging) were used to triangulate the position of enemy guns and engage in counter-battery fire. Muzzle flashes of guns could also be spotted and used to target enemy artillery.


German ammunition train wrecked by shell fire, c. 1918.

Railways dominated in this war as in no other. The German strategy was known beforehand by the Allies simply because of the vast marshaling yards on the Belgian border that had no other purpose than to deliver the mobilized German army to its start point. The German mobilization plan was little more than a vast detailed railway timetable. Men and material could get to the front at an unprecedented rate by rail, but trains were vulnerable at the front itself. Thus, armies could only advance at the pace that they could build or rebuild a railway, e.g. the British advance across Sinai. Motorized transport was only extensively used in the last two years of World War I. After the rail head, troops moved the last mile on foot, and guns and supplies were drawn by horses and trench railways. Railways lacked the flexibility of motor transport and this lack of flexibility percolated through into the conduct of the war.

War of attrition

All countries involved in the war applied the full force of industrial mass-production to the manufacture of weapons and ammunition, especially artillery shells. Women on the home-front played a crucial role in this by working in munitions factories. This complete mobilization of a nation's resources, or "total war" meant that not only the armies, but also the economies of the warring nations were in competition.

For a time, in 1914–1915, some hoped that the war could be won through an attrition of materiel—that the enemy's supply of artillery shells could be exhausted in futile exchanges. But production was ramped up on both sides and hopes proved futile. In Britain the Shell Crisis of 1915 brought down the British government, and led to the building of HM Factory, Gretna, a huge munitions factory on the English-Scottish border.

The war of attrition then focused on another resource: human lives. In the Battle of Verdun in particular, German Chief of Staff Erich Von Falkenhayn hoped to "bleed France white" through repeated attacks on this French city.

In the end, the war ended through a combination of attrition (of men and material), advances on the battlefield, arrival of American troops in large numbers, and a breakdown of morale and productivity on the German home-front due to an effective naval blockade of her seaports.

Air warfare

The Fokker triplane belonging to Manfred von Richthofen (the "Red Baron")
The Fokker triplane belonging to Manfred von Richthofen (the "Red Baron")

Aviation in World War I started with primitive aircraft, primitively used. Technological progress was swift, leading to ground attack, tactical bombing, and highly publicized, deadly dogfights among aircraft equipped with forward-firing, synchronized machine guns from July 1915 onwards. However, these uses made a lesser impact on the war than more mundane roles in intelligence, sea patrol and especially artillery spotting. Antiaircraft warfare also had its beginnings in this war.

As with most technologies, aircraft and their use underwent many improvements during World War I. As the initial war of movement on the Western Front settled into trench warfare, aerial reconnaissance over the front added to the difficulty of mounting surprise attacks against entrenched and concealed defenders.

Manned observation balloons floating high above the trenches were used as stationary observation posts, reporting enemy troop positions and directing artillery fire. Balloons commonly had a crew of two, each equipped with parachutes: upon an enemy air attack on the flammable balloon, the crew would jump to safety. At the time, parachutes were too heavy to be used by pilots in aircraft, and smaller versions would not be developed until the end of the war. (In the British case, there arose concerns that they might undermine morale, effectively encouraging cowardice.) Recognized for their value as observer platforms, observation balloons were important targets of enemy aircraft. To defend against air attack, they were heavily protected by large concentrations of antiaircraft guns and patrolled by friendly aircraft.

While early air spotters were unarmed, they soon began firing at each other with handheld weapons. An arms race commenced, quickly leading to increasingly agile planes equipped with machine guns. A key innovation was the interrupter gear, a Dutch invention[5] that allowed a machine gun to be mounted behind the propeller so the pilot could fire directly ahead, along the plane's flight path.

As the stalemate developed on the ground, with both sides unable to advance even a few miles without a major battle and thousands of casualties, planes became greatly valued for their role gathering intelligence on enemy positions. They also bombed enemy supplies behind the trench lines, in the manner of later attack aircraft. Large planes with a pilot and an observer were used to reconnoiter enemy positions and bomb their supply bases. These large and slow planes made easy targets for enemy fighter planes, who in turn were met by fighter escorts and spectacular aerial dogfights.

German strategic bombing during World War I struck Warsaw, Paris, London and other cities. Germany led the world in Zeppelins, and used these airships to make occasional bombing raids on military targets, London and other British cities, without great effect. Later in the war, Germany introduced long range strategic bombers. Damage was again minor but they forced the British air forces to maintain squadrons of fighters in England to defend against air attack, depriving the British Expeditionary Force of planes, equipment, and personnel badly needed on the Western front.

The Allies made much smaller efforts in bombing the Central Powers.


Between late 1914 and early 1918, the Western Front hardly moved. When Russia surrendered after the October Revolution in 1917, Germany was able to move many troops to the Western Front. Combined with new stormtrooper infantry trained in infiltration tactics to exploit enemy weak points and penetrate into rear areas, they launched a series of offensives in the spring of 1918. In the largest of these, Operation Michael, General Oskar von Hutier pushed forward 60 kilometers, gaining in a couple weeks what France and Britain had spent years to achieve. Although initially successful tactically, these offensives stalled after outrunning their horse-drawn supply, artillery, and reserves, leaving German forces weakened and exhausted.

In the Battle of Amiens of August 1918, the Triple Entente forces began a counterattack that would be called the "Hundred Days Offensive". The Australian and Canadian divisions that spearheaded the attack managed to advance 13 kilometers on the first day alone. These battles marked the end of trench warfare on the Western Front and a return to mobile warfare. The sort of unit that now began to emerge combined cyclist infantry and machine guns mounted on motor cycle sidecars. These motor machine gun units had originated in 1915 and were most active in the Middle East.[6] The mobile personnel shield was a less successful attempt at restoring mobility.[7]

The Hindenburg Line fell to the Allies and the Canal du Nord was crossed. In Berlin, Kaiser Wilhelm was told Germany had lost, and must now surrender. Advances continued but political developments inside Germany compelled Germany to sign an armistice on November 11, 1918.

The war was over, but a new mobility-driven form of warfare was beginning to emerge; one that would be mastered by the defeated Germans and deployed in 1939 as their blitzkrieg, or "lightning warfare", embodying all they had learned in 1918.


Although the concept of the tank had been suggested as early as the 1890s, few authorities showed interest in them until the trench stalemate of World War I caused reconsideration. The British Royal Navy and French industrialists invented tanks.

In Britain, a landships committee was formed, and teamed with the inventions committee, set out to develop a practical weapon.

Based on the caterpillar track (invented in 1770 and perfected in the early 1900s) and the four-stroke gasoline powered internal combustion engine (refined in the 1870s), early World War One tanks were fitted with Maxim type guns or Lewis guns, armor plating, and caterpillar tracks configured to allow crossing of an 8-foot-wide (2.4 m) trench.

Early tanks were unreliable, breaking down often. Though at first they terrified the Germans, their use in the engagements of 1917 provided more opportunities for development than actual battle successes. It was also realized that new tactics had to be developed to best make use of this weapon. In particular, planners learned that tanks needed infantry support and massed formations to be effective. Once tanks could be fielded in the hundreds, as in the opening assault of the Battle of Cambrai in November 1917, they began to show their potential. German artillerymen quickly learned how to counter them, in small numbers.

Still, reliability was the primary weakness of tanks throughout the remainder of the war. In the Battle of Amiens, a major Entente counteroffensive near the end of the war, British forces went to field with 534 tanks. After several days, only a few were still in commission, with those that suffered mechanical difficulties outnumbering those disabled by enemy fire.

Despite rapidly increasing French production, their numbers remained too small to make more than a modest impact on the progress of the war in 1918. Germany used a few captured enemy tanks, and made a few. Plan 1919 outlined the future use of massive tank formations in great offensives combined with ground attack aircraft.

Regardless of their effects on World War I, tank technology and mechanized warfare had been launched and grew increasingly sophisticated in the years following the war. By World War II, the tank had evolved into a fearsome weapon and restored mobility.[8]

At sea

The years leading up to the war saw the use of improved metallurgical and mechanical techniques to produce larger ships with larger guns and, in reaction, more armor. The launching of HMS Dreadnought (1906) revolutionized battleship construction, leaving many ships obsolete before they were completed. German ambitions brought an Anglo-German naval arms race in which the Imperial German Navy was built up from a small force to the world's most modern and second most powerful. However, even this high-technology navy entered the war with a mix of newer ships and obsolete older ones.

The advantage was in long-range gunnery, and naval battles took place at far greater distances than before. The 1916 Battle of Jutland demonstrated the excellence of German ships and crews, but also showed that the High Seas Fleet was not big enough to challenge openly the British blockade of Germany. It was the only full-scale battle between fleets in the war.

Having the largest surface fleet, the United Kingdom sought to press its advantage. British ships blockaded German ports, hunted down German and Austro-Hungarian ships wherever they might be on the high seas, and supported actions against German colonies. The German surface fleet was largely kept in the North Sea. This situation pushed Germany, in particular, to direct its resources to a new form of naval power: submarines.

Naval mines were deployed in hundreds of thousands, or far greater numbers than in previous wars. Submarines proved surprisingly effective for this purpose. Influence mines were a new development but moored contact mines were the most numerous. They resembled those of the late 19th century, improved so they less often exploded while being laid. The Allies produced enough mines to build the North Sea Mine Barrage to help bottle the Germans into the North Sea, but it was too late to make much difference.


World War I was the first conflict in which submarines were a serious weapon of war. In the years shortly before the war, the relatively sophisticated propulsion system of diesel power while surfaced and battery power while submerged was introduced. Their armament had similarly improved, but few were in service. Germany had already increased production, and quickly built up its U-boat fleet, both for action against British warships and for a counterblockade of the British Isles. 360 were eventually built. The resulting U-boat Campaign (World War I) destroyed more enemy warships than the High Seas Fleet had, and hampered British war supplies as the more expensive surface fleet had not.

The United Kingdom relied heavily on imports to feed its population and supply its war industry, and the German Navy hoped to blockade and starve Britain using U-boats to attack merchant ships. Lieutenant Otto Weddigen remarked of the second submarine attack of the Great War:

Submarines soon came under persecution by submarine chasers and other small warships using hastily devised anti-submarine weapons. They could not impose an effective blockade while acting under the restrictions of the prize rules and international law of the sea. They resorted to unrestricted submarine warfare, which cost Germany public sympathy in neutral countries and was a factor contributing to the American entry into World War I.

This struggle between German submarines and British counter measures became known as the "First Battle of the Atlantic". As German submarines became more numerous and effective, the British sought ways to protect their merchant ships. "Q-ships", attack vessels disguised as civilian ships, were one early strategy.

Consolidating merchant ships into convoys protected by one or more armed navy vessels was adopted later in the war. There was initially a great deal of debate about this approach, out of fear that it would provide German U-boats with a wealth of convenient targets. Thanks to the development of active and passive sonar devices,[9] coupled with increasingly deadly anti-submarine weapons, the convoy system reduced British losses to U-boats to a small fraction of their former level.

Small arms

French machine gunners defend a ruined cathedral, late in the war

Infantry weapons for major powers were mainly bolt action rifles, capable of firing ten or more rounds per minute. German soldiers carried Gewehr 98 rifle in 8mm mauser, while the British carried the Short Magazine Lee–Enfield rifle.[10] Rifles with telescopic sights were used by snipers, and were first used by the Germans.[11]

Machine guns were also used by large powers; both sides used the Maxim gun, a fully automatic belt-fed weapon, capable of long-term sustain used provided it was supplied to adequate amounts of ammunition and cooling water, and its French counterpart, the Hotchkiss M1914 machine gun.[12] Their use in defense, combined with barbed wire obstacles, converted the expected mobile battlefield to a static one. The machine gun was useful in stationary battle but was not practical for easy movement through battlefields, and therefore forced soldiers to face enemy machine guns without machine guns of their own.

Before the war, the French Army studied the question of a light machine gun but had made none for use. At the start of hostilities, France quickly turned an existing prototype (the "CS" for Chauchat and Sutter) into the lightweight Chauchat M1915 automatic rifle with a high rate of fire. Besides its use by the French, the first American units to arrive in France used it in 1917 and 1918. Hastily mass-manufactured under desperate wartime pressures, the weapon developed a reputation for unreliability.[13]

Seeing the potential of such a weapon, the British Army adopted the American-designed Lewis gun chambered in .303 British. The Lewis gun was the first true light machine gun that could in theory be operated by one man, though in practice the bulky ammo pans required an entire section of men to keep the gun operating.[14] The Lewis Gun was also used for marching fire, notably by the Australian Corps in the July 1918 Battle of Hamel.[13][15] To serve the same purpose, the German Army adopted the MG08/15 which was impractically heavy at 48.5 pounds (22 kg) counting the water for cooling and one magazine holding 100 rounds.[15] In 1918 the M1918 Browning Automatic Rifle (BAR) was introduced in the US Army, the weapon was an "automatic rifle" and like the Chauchat was designed with the concept of walking fire in mind.[16] The tactic was to be employed under conditions of limited field of fire and poor visibility such as advancing through woods.[17][18]

Some of the first submachine guns was widespread use near the end of the war such as the MP-18.


Grenades proved to be effective weapons in the trenches. When the war started, grenades were few and poor. Hand grenades were used and improved throughout the war. Contact fuzes became less common, replaced by time fuzes.

The British entered the war with the long-handled impact detonating "Grenade, Hand No 1".[19] This was replaced by the No. 15 "Ball Grenade" to partially overcome some of its inadequacies. An improvised hand grenade was developed in Australia for use by ANZAC troops called the Double Cylinder "jam tin" which consisted of a tin filled with dynamite or guncotton, packed round with scrap metal or stones. To ignite, at the top of the tin there was a Bickford safety fuse connecting the detonator, which was lit by either the user, or a second person.[19] The "Mills bomb" (Grenade, Hand No. 5) was introduced in 1915 and would serve in its basic form in the British Army until the 1970s. Its improved fusing system relied on the soldier removing a pin and while holding down a lever on the side of the grenade. When the grenade was thrown the safety lever would automatically release, igniting the grenades internal fuse which would burn down until the grenade detonated. The French would use the F1 defensive grenade.

German discus grenades with multiple impact fuses proved inadequate
German discus grenades with multiple impact fuses proved inadequate

The major grenades used in the beginning by the German Army were the impact-detonating "discus" or "oyster shell" bomb and the Mod 1913 black powder kugelhandgranate with a friction-ignited time fuse.[19] During the war Germany developed the much more effective Model 24 grenade or "potato masher" whose variants remained in use for decades.

Hand grenades were not the only attempt at projectile explosives for infantry. A rifle grenade was brought into the trenches to attack the enemy from a greater distance. The Hales rifle grenade got little attention from the British Army before the war began but, during the war, Germany showed great interest in this weapon. The resulting casualties for the Allies caused Britain to search for a new defense.[20]

The Stokes mortar, a lightweight and very portable trench mortar with short tube and capable of indirect fire, was rapidly developed and widely imitated.[21] Mechanical bomb throwers of lesser range were used in a similar fashion to fire upon the enemy from a safe distance within the trench.

The Sauterelle was a grenade launching Crossbow used before the Stokes morter by French and British troops.

Flame throwers

Defensive use
Defensive use

The Imperial German Army deployed flame throwers (Flammenwerfer) on the Western Front attempting to flush out French or British soldiers from their trenches. Introduced in 1915, it was used with greatest effect during the Hooge battle of the Western Front on 30 July 1915. The German Army had two main types of flame throwers during the Great War: a small single person version called the Kleinflammenwerfer and a larger crew served configuration called the Grossflammenwerfer. In the latter, one soldier carried the fuel tank while another aimed the nozzle. Both the large and smaller versions of the flame-thrower were of limited use because their short range left the operator(s) exposed to small arms fire.

See also


  1. ^ Compare: Boot, Max (2006). "The Consequences of the Industrial Revolution". War Made New: Weapons, Warriors, and the Making of the Modern World (reprint ed.). New York: Penguin Publishing Group. ISBN 9781101216835. Retrieved 2017-01-24. The First Industrial Revolution transformed warfare between the end of the Crimean War (1856) and the start of World War I (1914)
  2. ^ Tucker, Spencer C. (1998) The Great War: 1914-18. Bloomington: Indiana University Press; p. 11
  3. ^ March, F. A.; Beamish, R. J. (1919), History of the World War: An Authentic Narrative of the World's Greatest War, Leslie-Judge
  4. ^ Chemical weapons in World War I
  5. ^ "No. 1369: Fokker's Interrupter Mechanism".
  6. ^ "Motor Machine-gun units". Via Wayback Machine. 2008-06-22. Archived from the original on 2008-06-22. Retrieved 2018-11-28.
  7. ^ Gougaud, p.110
  8. ^ Raudzens 1990, pp. 421–426
  9. ^ Hartcup 1988, pp. 129, 130, 140
  10. ^ Bull, Stephen (2002) World War 1 Trench Warfare; (1): 1914-16. Oxford: Osprey Publishing; pp. 9-10
  11. ^ Ellis, John (1989) Eye Deep in Hell: trench warfare in World War 1. London: Pantheon Books, Random House; p. 69
  12. ^ Bull, Stephen (2002) World War 1 Trench Warfare; (1): 1914-16. Oxford: Osprey Publishing; pp. 11-12
  13. ^ a b Bull, Stephen; Hook, Adam (2002). World War I Trench Warfare (1916–1918). Elite. 84 (3 ed.). Osprey. pp. 31–32. ISBN 1-84176-198-2.
  14. ^ P. Griffiths 1994 Battle Tactics of the Western Front p130
  15. ^ a b Sheffield, G.D. (2007). War on the Western Front. Osprey. p. 250. ISBN 1-84603-210-5.
  16. ^ Persons, William Ernest (1920). Military science and tactics. 2. p. 280.
  17. ^ Blain, W.A. (November–December 1921). "Does the Present Automatic Rifle Meet the Needs of the Rifleman?". The Military Engineer. Society of American Military Engineers. 12–13: 534–535.
  18. ^ Landing-Force Manual: United States Navy. U.S. Government Printing Office. 1921. p. 447.
  19. ^ a b c Bull, Stephen (2002) World War 1 Trench Warfare; (1): 1914-16. Oxford: Osprey Publishing; p. 27
  20. ^ Bull, Stephen (2002) World War 1 Trench Warfare; (1): 1914-16. Oxford: Osprey Publishing; p. 29
  21. ^ Duffy, Michael (2000-07) "Safe Surf".

External links

This page was last edited on 8 May 2019, at 01:54
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.