To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Taylor expansions for the moments of functions of random variables

From Wikipedia, the free encyclopedia

In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite.

YouTube Encyclopedic

  • 1/3
    Views:
    5 903
    10 484
    44 831
  • Geometric Random Variables
  • Moment generating function of the continuous uniform distribution | proof | part 1
  • The Expected Value and Variance of Discrete Random Variables

Transcription

First moment

Given and , the mean and the variance of , respectively,[1] a Taylor expansion of the expected value of can be found via

Since the second term vanishes. Also, is . Therefore,

.

It is possible to generalize this to functions of more than one variable using multivariate Taylor expansions. For example,

Second moment

Similarly,[1]

The above is obtained using a second order approximation, following the method used in estimating the first moment. It will be a poor approximation in cases where is highly non-linear. This is a special case of the delta method.

Indeed, we take .

With , we get . The variance is then computed using the formula .

An example is,

The second order approximation, when X follows a normal distribution, is:[2]

First product moment

To find a second-order approximation for the covariance of functions of two random variables (with the same function applied to both), one can proceed as follows. First, note that . Since a second-order expansion for has already been derived above, it only remains to find . Treating as a two-variable function, the second-order Taylor expansion is as follows:

Taking expectation of the above and simplifying—making use of the identities and —leads to . Hence,

Random vectors

If X is a random vector, the approximations for the mean and variance of are given by[3]

Here and denote the gradient and the Hessian matrix respectively, and is the covariance matrix of X.

See also

Notes

  1. ^ a b Haym Benaroya, Seon Mi Han, and Mark Nagurka. Probability Models in Engineering and Science. CRC Press, 2005, p166.
  2. ^ Hendeby, Gustaf; Gustafsson, Fredrik. "ON NONLINEAR TRANSFORMATIONS OF GAUSSIAN DISTRIBUTIONS" (PDF). Retrieved 5 October 2017.
  3. ^ Rego, Bruno V.; Weiss, Dar; Bersi, Matthew R.; Humphrey, Jay D. (14 December 2021). "Uncertainty quantification in subject‐specific estimation of local vessel mechanical properties". International Journal for Numerical Methods in Biomedical Engineering. 37 (12): e3535. doi:10.1002/cnm.3535. ISSN 2040-7939. PMC 9019846. PMID 34605615.

Further reading

This page was last edited on 8 December 2023, at 00:13
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.