To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Tantalum boride

From Wikipedia, the free encyclopedia

Structure of TaB2
Structure of TaB

Tantalum borides are compounds of tantalum and boron most remarkable for their extreme hardness.

Properties

The Vickers hardness of TaB and TaB2 films and crystals is ~30 GPa.[1][2][3] Those materials are stable to oxidation below 700 °C and to acid corrosion.[1][3]

TaB2 has the same hexagonal structure as most diborides (AlB2, MgB2, etc.).[4] The mentioned borides have the following space groups: TaB (orthorhombic, Thallium(I) iodide-type, Cmcm), Ta5B6 (Cmmm), Ta3B4 (Immm), TaB2 (hexagonal, aluminum diboride-type, P6/mmm).[3]

Preparation

Single crystals of TaB, Ta5B6, Ta3B4 or TaB2 (about 1 cm diameter, 6 cm length) can be produced by the floating zone method.[2][3]

Tantalum boride films can be deposited from a gas mixture of TaCl5-BCl3-H2-Ar in the temperature range 540–800 °C. TaB2 (single-phase) is deposited at a source gas flow ratio (BCl3/TaCl5) of six and a temperature above 600 °C. TaB (single-phase) is deposited at BCl3/TaCl5 = 2–4 and T = 600–700 °C.[1]

Nanocrystals of TaB2 were successfully synthesized by the reduction of Ta2O5 with NaBH4 using a molar ratio M:B of 1:4 at 700-900 °C for 30 min under argon flow.[5]

Ta2O5 + 6.5 NaBH4 → 2 TaB2 + 4 Na(g,l) + 2.5 NaBO2+ 13 H2(g)

References

  1. ^ a b c Motojima, Seiji; Kito, Kazuhito; Sugiyama, Kohzo (1982). "Low-temperature deposition of TaB and TaB2 by chemical vapor deposition". Journal of Nuclear Materials. 105 (2–3). Elsevier BV: 262–268. Bibcode:1982JNuM..105..262M. doi:10.1016/0022-3115(82)90383-x. ISSN 0022-3115.
  2. ^ a b Otani, S; Korsukova, M.M; Mitsuhashi, T (1998). "Floating zone growth and high-temperature hardness of NbB2 and TaB2 single crystals". Journal of Crystal Growth. 194 (3–4). Elsevier BV: 430–433. Bibcode:1998JCrGr.194..430O. doi:10.1016/s0022-0248(98)00691-5. ISSN 0022-0248.
  3. ^ a b c d Okada, Shigeru; Kudou, Kunio; Higashi, Iwarni; Lundström, Torsten (1993). "Single crystals of TaB, Ta5B6, Ta3B4 and TAB2, as obtained from high-temperature metal solutions, and their properties". Journal of Crystal Growth. 128 (1–4). Elsevier BV: 1120–1124. Bibcode:1993JCrGr.128.1120O. doi:10.1016/s0022-0248(07)80109-6. ISSN 0022-0248.
  4. ^ Chen, Xing-Qiu; Fu, C. L.; Krčmar, M.; Painter, G. S. (2008-05-16). "Electronic and Structural Origin of Ultraincompressibility of5dTransition-Metal DiboridesMB2(M=W, Re, Os)". Physical Review Letters. 100 (19). American Physical Society (APS): 196403. Bibcode:2008PhRvL.100s6403C. doi:10.1103/physrevlett.100.196403. ISSN 0031-9007. PMID 18518467.
  5. ^ Zoli, Luca; Galizia, Pietro; Silvestroni, Laura; Sciti, Diletta (23 January 2018). "Synthesis of group IV and V metal diboride nanocrystals via borothermal reduction with sodium borohydride". Journal of the American Ceramic Society. 101 (6): 2627–2637. doi:10.1111/jace.15401.
This page was last edited on 20 May 2023, at 13:54
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.