To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Systems of Logic Based on Ordinals

From Wikipedia, the free encyclopedia

Systems of Logic Based on Ordinals was the PhD dissertation of the mathematician Alan Turing.[1][2]

Turing's thesis is not about a new type of formal logic, nor was he interested in so-called "ranked logic" systems derived from ordinal or relative numbering, in which comparisons can be made between truth-states on the basis of relative veracity. Instead, Turing investigated the possibility of resolving the Gödelian incompleteness condition using Cantor's method of infinites.

The thesis is an exploration of formal mathematical systems after Gödel's theorem. Gödel showed that for any formal system S powerful enough to represent arithmetic, there is a theorem G that is true but the system is unable to prove. G could be added as an additional axiom to the system in place of a proof. However this would create a new system S' with its own unprovable true theorem G', and so on. Turing's thesis looks at what happens if you simply iterate this process repeatedly, generating an infinite set of new axioms to add to the original theory, and even goes one step further in using transfinite recursion to go "past infinity", yielding a set of new theories Gα, one for each ordinal number α.

The thesis was completed at Princeton under Alonzo Church and was a classic work in mathematics that introduced the concept of ordinal logic.[3]

Martin Davis states that although Turing's use of a computing oracle is not a major focus of the dissertation, it has proven to be highly influential in theoretical computer science, e.g. in the polynomial-time hierarchy.[4]

YouTube Encyclopedic

  • 1/3
    Views:
    551
    248 108
    14 687 114
  • The Process of Programming: Using Turing Oracles in Cognitive Models of Problem-Solving (Bartlett)
  • The Mathematics of Quantum Computers | Infinite Series
  • The Banach–Tarski Paradox

Transcription

References

  1. ^ Turing, Alan (1938). Systems of Logic Based on Ordinals (PhD thesis). Princeton University. doi:10.1112/plms/s2-45.1.161. hdl:21.11116/0000-0001-91CE-3. ProQuest 301792588.
  2. ^ Turing, A. M. (1939). "Systems of Logic Based on Ordinals". Proceedings of the London Mathematical Society: 161–228. doi:10.1112/plms/s2-45.1.161. hdl:21.11116/0000-0001-91CE-3.
  3. ^ Solomon Feferman, Turing in the Land of O(z) in "The universal Turing machine: a half-century survey" by Rolf Herken 1995 ISBN 3-211-82637-8 page 111
  4. ^ Martin Davis "Computability, Computation and the Real World", in Imagination and Rigor edited by Settimo Termini 2006 ISBN 88-470-0320-2 pages 63-66 [1]

External links

This page was last edited on 24 March 2024, at 00:39
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.