To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Synthetic file system

From Wikipedia, the free encyclopedia

In computer science, a synthetic file system or a pseudo file system is a hierarchical interface to non-file objects that appear as if they were regular files in the tree of a disk-based or long-term-storage file system. These non-file objects may be accessed with the same system calls or utility programs as regular files and directories. The common term for both regular files and the non-file objects is node.

The benefit of synthetic file systems is that well-known file system semantics can be reused for a universal and easily implementable approach to interprocess communication. Clients can use such a file system to perform simple file operations on its nodes and do not have to implement complex message encoding and passing methods and other aspects of protocol engineering. For most operations, common file utilities can be used, so even scripting is quite easy.

This is commonly known as everything is a file and is generally regarded to have originated from Unix.

YouTube Encyclopedic

  • 1/5
    Views:
    70 050
    47 809
    91 571
    35 149
    50 589
  • The Evolution of Computer Speech
  • How to build synthetic DNA and send it across the internet | Dan Gibson
  • Psychology of Computing: Crash Course Computer Science #38
  • Differentiable Neural Computer (LIVE)
  • The Future of Deep Learning Research

Transcription

Examples

/proc filesystem

In the Unix-world, there is commonly a special filesystem mounted at /proc. This filesystem is implemented within the kernel and publishes information about processes. For each process, there is a directory (named by the process ID), containing detailed information about the process: status, open files, memory maps, mounts, etc.

/proc first appeared in Unix 8th Edition,[1] and its functionality was greatly expanded in Plan 9 from Bell Labs.[2]

Linux /sys filesystem

The /sys filesystem on Linux complements /proc, by providing a lot of (non-process related) detailed information about the in-kernel status to userspace. More traditional Unix systems locate this information in sysctl calls.

ObexFS

ObexFS is a FUSE-based filesystem that provides access to OBEX objects via a filesystem. Applications can work on remote objects via the OBEX protocol as if they were simply (local) files.

Plan 9 file servers

On the Plan 9 from Bell Labs operating system family, the concept of 9P synthetic filesystem is used as a generic IPC method. Contrary to most other operating systems, Plan 9's design is heavily distributed: while in other OS worlds, there are many (and often large) libraries and frameworks for common things, Plan 9 encapsulates them into fileservers. The most important benefit is that applications can be much simpler and that services run network and platform agnostic - they can reside on virtually any host and platform in the network, and virtually any kind of network, as long the fileserver can be mounted by the application.

Plan 9 drives this concept expansively: most operating system services, e.g. hardware access and networking stack are presented as fileservers. This way it is trivial to use these resources remotely (e.g. one host directly accessing another host's block devices or network interfaces) without the need of additional protocols.

Other implementations of the 9P file system protocol also exists for many other systems and environments.[3]

Embedded systems

Debugging embedded systems or even system-on-chip (SoC) devices is widely known to be difficult.[citation needed] Several protocols have been implemented to provide direct access to in-chip devices, but they tend to be proprietary, complex and hard to handle.

Based on 9P, Plan 9's network filesystem, studies suggest using synthetic filesystems as universal access scheme to that information. The major benefit is that 9P is very simple and so quite easy to implement in hardware and can be easily used and over virtually any kind of network (from a serial link up to the internet).

Pros and cons

The major argument for using synthetic filesystems might be the flexibility and easy access to service-oriented architectures. Once a noticeable number of applications use this scheme, the overall overhead (code, resource consumption, maintenance work) can be reduced significantly. Many general arguments for SOAs also apply here.

Arguments against synthetic filesystems include the fact that filesystem semantics may not fit all application scenarios. For example, complex remote procedure calls with many parameters tend to be hard to map to filesystem schemes,[citation needed] and may require application redesign.

References

  1. ^ "proc page from Section 4 of the unix 8th manual". Man.cat-v.org. Retrieved 2015-08-28.
  2. ^ "Proc page from Section 3 of the plan 9 manual". Man.cat-v.org. Retrieved 2015-08-28.
  3. ^ "9P Implementations". 9p.cat-v.org. Retrieved 2015-08-28.

External links

This page was last edited on 2 June 2022, at 20:34
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.