To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Surface-wave-sustained discharge

From Wikipedia, the free encyclopedia

A surface-wave-sustained discharge is a plasma that is excited by propagation of electromagnetic surface waves.[1][2] Surface wave plasma sources can be divided into two groups depending upon whether the plasma generates part of its own waveguide by ionisation or not. The former is called a self-guided plasma. The surface wave mode allows the generation of uniform high-frequency-excited plasmas in volumes whose lateral dimensions extend over several wavelengths of the electromagnetic wave, e.g. for microwaves of 2.45 GHz in vacuum the wavelength amounts to 12.2 cm.

Theory

For a long time,[when?] microwave plasma sources without a magnetic field were not considered suitable for the generation of high density plasmas. Electromagnetic waves cannot propagate in over-dense plasmas. The wave is reflected at the plasma surface due to the skin effect and becomes an evanescent wave. Its penetration depth corresponds to the skin depth , which can be approximated by

The non-vanishing penetration depth of an evanescent wave opens an alternative way of heating a plasma: Instead of traversing the plasma, the conductivity of the plasma enables the wave to propagate along the plasma surface. The wave energy is then transferred to the plasma by an evanescent wave which enters the plasma perpendicular to its surface and decays exponentially with the skin depth. Transfer mechanism allows to generate over-dense plasmas with electron densities beyond the critical density.

Design

Surface-wave-sustained plasmas (SWP) can be operated in a large variety of recipient geometries. The pressure range accessible for surface-wave-excited plasmas depends on the process gas and the diameter of the recipient. The larger the chamber diameter, the lower the minimal pressure necessary for the SWP mode. Analogously, the maximal pressure where a stable SWP can be operated decreases with increasing diameter.

The numerical modelling of SWPs is quite involved. The plasma is created by the electromagnetic wave, but it also reflects and guides this same wave. Therefore, a truly self-consistent description is necessary.

References

  1. ^ Calzada, M. D.; Moisan, M.; Gamero, A.; Sola, A. (1996). "Experimental investigation and characterization of the departure from local thermodynamic equilibrium along a surface-wave-sustained discharge at atmospheric pressure". Journal of Applied Physics. 80 (1): 46–55. Bibcode:1996JAP....80...46C. doi:10.1063/1.362748. ISSN 0021-8979.
  2. ^ Zakrzewski, Zenon; Moisan, Michel; Sauvé, Gaston (1993). "Surface-Wave Plasma Sources". Microwave Discharges. NATO ASI Series. Vol. 302. pp. 117–140. doi:10.1007/978-1-4899-1130-8_9. ISBN 978-1-4899-1132-2. ISSN 0258-1221.


This page was last edited on 3 January 2024, at 10:00
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.