To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Sulfur dichloride

From Wikipedia, the free encyclopedia

Sulfur dichloride
Structure and dimensions of the sulfur dichloride molecule
Names
IUPAC names
Sulfur dichloride
Sulfur(II) chloride
Dichlorosulfane
Other names
Sulphur chloride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.031.014
EC Number
  • 234-129-0
RTECS number
  • WS4500000
UNII
UN number 1828
Properties
SCl2
Molar mass 102.97 g·mol−1
Appearance Red liquid
Odor Pungent
Density 1.621 g·cm−3, liquid
Melting point −121.0 °C (−185.8 °F; 152.2 K)
Boiling point 59 °C (138 °F; 332 K) (decomposes)
Hydrolysis
−49.4·10−6 cm3/mol
1.5570
Structure
C2v
Bent
Hazards
Safety data sheet ICSC 1661
Corrosive
C
(C)
Irritant
Xi
(Xi)
Dangerous for the Environment (Nature)
N
(N)
R-phrases (outdated) R14, R34, R37, R50
S-phrases (outdated) (S1/2), S26, S45, S61
NFPA 704 (fire diamond)
Flammability code 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilHealth code 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasReactivity code 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no codeNFPA 704 four-colored diamond
1
3
1
234 °C (453 °F; 507 K)
Related compounds
Related
Disulfur dichloride
Thionyl chloride
Sulfuryl chloride
Related compounds
Sulfur difluoride
Sulfur tetrafluoride
Sulfur hexafluoride
Disulfur dibromide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references

Sulfur dichloride is the chemical compound with the formula SCl2. This cherry-red liquid is the simplest sulfur chloride and one of the most common. It is used as a precursor to organosulfur compounds.[1]

Chlorination of sulfur

SCl2 is produced by the chlorination of either elemental sulfur or disulfur dichloride.[2] The process occurs in a series of steps, some of which are:

S8 + 4 Cl2 → 4 S2Cl2; ΔH = −58.2 kJ/mol
S2Cl2 + Cl2 ↔ 2 SCl2; ΔH = −40.6 kJ/mol

The addition of Cl2 to S2Cl2 has been proposed to proceed via a mixed valence intermediate Cl3S-SCl. SCl2 undergoes even further chlorination to give SCl4, but this species is unstable at near room temperature. It is likely that several SxCl2 exist where x > 2.

Disulfur dichloride, S2Cl2, is the most common impurity in SCl2. Separation of SCl2 from S2Cl2 is possible via distillation with PCl3 to form an azeotrope of 99% purity, however sulfur dichloride loses chlorine slowly at room temperature and reverts to disulfur dichloride. Pure samples may be stored in sealed glass ampules which develop a slight positive pressure of chlorine, halting the decomposition.

Use of SCl2 in chemical synthesis

SCl2 is used In organic synthesis. It adds to alkenes to give chloride-substituted thioethers. Illustrative applications are its addition to 1,5-cyclooctadiene to give a bicyclic thioether[3] and ethylene to give sulfur mustard S(CH2CH2Cl)2.[4]

SCl2 is also a precursor to several inorganic sulfur compounds. Treatment with fluoride salts gives SF4 via the decomposition of the intermediate sulfur difluoride. With H2S, SCl2 reacts to give "lower" sulfanes such as S3H2.

Reaction with ammonia affords sulfur nitrides related to S4N4. Treatment of SCl2 with primary amines gives sulfur diimides. One example is di-t-butylsulfurdiimide.[5]

Safety considerations

SCl2 hydrolyzes with release of HCl. Old samples contain Cl2.[citation needed]

References

  1. ^ Schmidt, M.; Siebert, W. "Sulphur" Comprehensive Inorganic Chemistry Vol. 2, ed. A.F. Trotman-Dickenson. 1973.
  2. ^ F. Fehér "Dichloromonosulfane" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 370.
  3. ^ Bishop, Roger (1992). "9-Thiabicyclo[3.3.1]nonane-2,6-dione". Organic Syntheses. 70: 120.; Collective Volume, 9, p. 692
  4. ^ R. J. Cremlyn “An Introduction to Organosulfur Chemistry” John Wiley and Sons: Chichester (1996). ISBN 0-471-95512-4.
  5. ^ Kresze, G.; Wucherpfennig, W. (1967). "New Methods of Preparative Organic Chemistry V: Organic Syntheses with Imides of Sulfur Dioxide". Angewandte Chemie International Edition in English. 6 (2): 149–167. doi:10.1002/anie.196701491. PMID 4962859.
This page was last edited on 23 November 2019, at 13:28
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.