To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Sulfite sulfate

From Wikipedia, the free encyclopedia

A sulfite sulfate is a chemical compound that contains both sulfite and sulfate anions [SO3]2− [SO4]2−. These compounds were discovered in the 1980s as calcium and rare earth element salts. Minerals in this class were later discovered. Minerals may have sulfite as an essential component, or have it substituted for another anion as in alloriite.[1] The related ions [O3SOSO2]2− and [(O2SO)2SO2]2− may be produced in a reaction between sulfur dioxide and sulfate and exist in the solid form as tetramethyl ammonium salts. They have a significant partial pressure of sulfur dioxide.[2]

Related compounds are selenate selenites and tellurate tellurites with a varying chalcogen. They can be classed as mixed valent compounds.

Production

Europium and cerium rare earth sulfite sulfates are produced when heating the metal sulfite trihydrate in air.

Ce2(SO3)3.3H2O + 12O2 → Ce2(SO3)2SO4 + 3H2O

Ce2(SO3)3.3H2O + O2 → Ce2SO3(SO4)2 + 3H2O

Other rare earth sulfite sulfates can be crystallized as hydrates from a water solution.[3] These sulfite sulfates can be made by at least three methods. One is to dissolve a rare earth oxosulfate in water and then bubble in sulfur dioxide. The second way a rare earth oxide is dissolved in a half equivalent of sulfuric acid. The third way was to bubble sulfur dioxide through a suspension of rare earth oxide in water until it dissolved, then let it sit around for a few days with limited air exposure. To make calcium sulfite sulfate, a soluble calcium salt is added to a mixed solution of sodium sulfite and sodium sulfate.[4]

Control of pH is important when attempting to produce solid sulfite compounds. In basic conditions sulfite easily oxidises to sulfate and in acidic conditions it easily turns into sulfur dioxide.[5]

Properties

In the sulfite sulfates, sulfur has both a +4 and a +6 oxidation state.[6]

The crystal structure of sulfite sulfates has been difficult to study, as the crystal symmetry is low, crystals are usually microscopic as they are quite insoluble, and they are mixed with other related phases. So they have been studied via powder X-ray diffraction.[4]

Reactions

When heated in the absence of oxygen, cerium sulfite sulfate hydrate parts with water by 400 °C. Up to 800° it loses some sulfur dioxide. From 800° to 850 °C it loses sulfur dioxide and disulfur resulting in cerium oxy disulfate, and dioxy sulfate, which loses some further sulfur dioxide as it is heated to 1000 °C. Over 1000° the remaining oxysulfates decompose to sulfur dioxide, oxygen and cerium dioxide. This reaction is studied as a way to convert sulfur dioxide into sulfur and oxygen using only heat.[7][8]

Another thermochemical reaction for cerium sulfite sulfate hydrate involves using iodine to oxidise the sulfite to sulfate, producing hydrogen iodide which can then be used to make hydrogen gas and iodine. When combined with the previous high temperature process, water can be split into oxygen and hydrogen using heat only.[9][10] This is termed the GA sulfur-iodine water splitting cycle.[11]

Applications

Calcium sulfite sulfate hydrate is formed in flue gas scrubbers that attempt to remove sulfur dioxide from coal burning facilities. Calcium sulfite sulfate hydrate is also formed in the weathering of limestone, concrete and mortar by sulfur dioxide polluted air. These two would be classed as anthropogenic production as it was not deliberately produced or used.

List

name formula ratio

SO3:SO4

mw system space group unit cell volume density optical references
tricalcium disulfite sulfate dodecahydrate

Orschallite

Ca3(SO3)2SO4•12H2O 2:1 rhombohedral R3c a=11.3514 c=28.412

a = 11.350 c = 28.321 Z=6

3170

3159.7

1.87 Uniaxial (+)

nω = 1.4941 nɛ = 1.4960

[12][13][14]
Hielscherite Ca3Si(OH)6(SO4)(SO3)·11H2O 1:1 hexagonal P63 a = 11.1178 c = 10.5381 Z=2 1128.06 1.82 Uniaxial (−)

nω = 1.494 nε = 1.476

[15]
pentamanganese tetrahydroxide disulfite disulfate dihydrate Mn5(OH)4(H2O)2[SO3]2[SO4] 2:1 634.9 monoclinic P21/m a = 7.6117 b = 8.5326 c = 10.9273 β = 101.600° Z = 2 695.2 3.0321 pink [16]
Y2(SO3)2SO4•2.5H2O 2:1 [4]
Barium sulfite sulfate3,7 Ba(SO3)0.3(SO4)0.7 2:7 orthorhombic Pnma a=8.766 b=5.46 c=7.126 [17]
lanthanum disulfite sulfate tetrahydrate La2(SO3)2SO4•4H2O 2:1 [4]
cerium disulfite sulfate Ce2(SO3)2SO4 2:1 [3]
cerium disulfite sulfate tetrahydrate Ce2(SO3)2SO4•4H2O 2:1 [7][18]
cerium sulfite disulfate Ce2SO3(SO4)2 1:2 [3]
neodymium disulfite sulfate tetrahydrate Nd2(SO3)2SO4•4H2O 2:1 [4]
Nd(SO3)(HSO4)(H2O)3 1:1 374.41 triclinic P1 a=6.5904 b=6.9899 c=9.536 α=101.206 β=97.767

γ=92.823 Z=2

425.67 2.921 light violet [5]
Nd(SO3)(HSO4) 1:1 triclinic P1 a=6.4152 b=6.6232 c=6.9955 α=91.726 β=92.438

γ=92.423 Z=2

296.55 3.610 light violet [5]
ethylenediammonium bis-(neodymium sulfite sulfate hydrate) C2H10N2[Nd(SO3)(SO4)H2O]2 1:1 738.87 monoclinic P21/c a=9.0880 b=6.9429 c=13.0805 β=91.55 Z=2 825.04 2.974 pink [19][20]
Sm2(SO3)2SO4•2.5H2O 2:1 [21]
europium disulfite sulfate Eu2(SO3)2SO4 2:1 [3]
europium sulfite disulfate Eu2SO3(SO4)2 1:2 [3]
Tb2(SO3)2SO4•2.5H2O 2:1 [4]
poly[diaqua-μ(4)-sulfato-di-μ(4)-sulfito-didysprosium(III)] Dy2(SO3)2SO4•2H2O 2:1 617.21 monoclinic C2/c a = 11.736 b = 6.8010 c = 12.793 β = 102.686° Z=4 996.1 4.115 colourless [4][22]
Ho2(SO3)2SO4•2.5H2O 2:1 [4]
Er2(SO3)2SO4•2.5H2O 2:1 [4]
Yb2(SO3)2SO4•2.5H2O 2:1 [4]
Complexes
[OsO2(SO3)(SO4)(NH3)2]2− 1:1 [23]

References

  1. ^ Rastsvetaeva, R. K.; Ivanova, A. G.; Chukanov, N. V.; Verin, I. A. (July 2007). "Crystal structure of alloriite". Doklady Earth Sciences. 415 (1): 815–819. Bibcode:2007DokES.415..815R. doi:10.1134/S1028334X07050340. S2CID 130051924.
  2. ^ Richardson, Stephanie (2009). "Capture of Sulfur Dioxide using Sulfur Oxydianions: Synthesis and Characterization of Two Novel Compounds" (PDF). Retrieved 24 June 2020.
  3. ^ a b c d e Karppinen, M.; Leskelä, M.; Niinistö, L. (March 1989). "Studies on lanthanoid sulfites. Part VIII. Thermogravimetric study of europium sulfite trihydrate". Journal of Thermal Analysis. 35 (2): 355–359. doi:10.1007/BF01904438. ISSN 0368-4466. S2CID 97297578.
  4. ^ a b c d e f g h i j Leskelä, Markku; De Matos, J.Everardo X.; Niinistö, Lauri (December 1987). "Studies on lanthanoid sulfites. Part VII. Preparative and thermal study on rare earth sulfite sulfate hydrates". Inorganica Chimica Acta. 139 (1–2): 121–123. doi:10.1016/S0020-1693(00)84054-2.
  5. ^ a b c Dovgan, Jakob T.; Polinski, Matthew J.; Mercado, Brandon Q.; Villa, Eric M. (2018-09-05). "pH Driven Hydrothermal Syntheses of Neodymium Sulfites and Mixed Sulfate-Sulfites". Crystal Growth & Design. 18 (9): 5332–5341. doi:10.1021/acs.cgd.8b00769. ISSN 1528-7483. S2CID 104641887.
  6. ^ Alpers, Charles N.; Jambor, John L.; Nordstrom, D. (2018). Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance. Walter de Gruyter GmbH & Co KG. p. 95. ISBN 978-1-5015-0866-0.
  7. ^ a b Peterson, E. J.; Foltyn, E. M.; Onstott, E. I. (December 1983). "Thermochemical splitting of sulfur dioxide with cerium(IV) oxide". Journal of the American Chemical Society. 105 (26): 7572–7573. doi:10.1021/ja00364a018. ISSN 0002-7863.
  8. ^ HAAS, N; PETERSON, E; ONSTOTT, E (1990). "Dilanthanum dioxymonosulfate as a recycle reagent and recycle substrate for the sulfur dioxide-iodine thermochemical hydrogen cycle". International Journal of Hydrogen Energy. 15 (6): 397–402. doi:10.1016/0360-3199(90)90196-6.
  9. ^ Onstott, E. I. (March 1991). "Thermochemistry of iodine oxidation of sulfite in cerium and praseodymium oxide-sulfite-sulfate-hydrate compositions to yield hydrogen iodide by hydrolysis and disulfur by concomitant disproportionation and comparison to the behavior of lanthanum". The Journal of Physical Chemistry. 95 (6): 2520–2525. doi:10.1021/j100159a076. ISSN 0022-3654.
  10. ^ Onstott, E (1989). "Thermochemistry of iodine oxidation of sulfite in lanthanum oxide-sulfite-sulfate hydrates to yield hydrogen iodide". International Journal of Hydrogen Energy. 14 (2): 141–145. doi:10.1016/0360-3199(89)90004-9.
  11. ^ Onstott, E I; Bowman, M G; Michnovicz, M F; Hollabaugh, C M (15 July 1984). "Modification of the sulfur dioxide-iodine thermochemical hydrogen cycle with lanthanum sulfites and sulfates". Retrieved 22 June 2020.
  12. ^ Cohen, Abraham; Zangen, Mendel (1984-07-05). "STUDIES ON ALKALINE EARTH SULFITES – V. STRUCTURE AND STABILITY OF THE NEW COMPOUND Ca 3 (SO 3 ) 2 SO 4 ·12H 2 O AND ITS SOLID SOLUTION IN CALCIUM SULFITE TETRAHYDRATE". Chemistry Letters. 13 (7): 1051–1054. doi:10.1246/cl.1984.1051. ISSN 0366-7022.
  13. ^ Weidenthaler, C.; Tillmanns, E.; Hentschel, G. (1993). "Orschallite, Ca3(SO3)2 . SO4 . 12H2O, a new calcium-sulfite-sulfate-hydrate mineral". Mineralogy and Petrology. 48 (2–4): 167–177. doi:10.1007/BF01163095. ISSN 0930-0708. S2CID 93169523.
  14. ^ Zangen, Mendel; Cohen, Abraham (5 June 1985). "STUDIES ON ALKALINE EARTH SULFITES. VII. HYDROGEN BONDING AND THE LOCATION OF HYDROGEN ATOMS IN THE CRYSTAL STRUCTURE OF CaSO3·4H2O AND Ca3(SO3)2SO4 ·12H2O". Chemistry Letters. 14 (6): 797–800. doi:10.1246/cl.1985.797.
  15. ^ Pekov, I. V.; Chukanov, N. V.; Britvin, S. N.; Kabalov, Y. K.; Göttlicher, J.; Yapaskurt, V. O.; Zadov, A. E.; Krivovichev, S. V.; Schüller, W.; Ternes, B. (October 2012). "The sulfite anion in ettringite-group minerals: a new mineral species hielscherite, Ca 3 Si(OH) 6 (SO 4 )(SO 3 )·11H 2 O, and the thaumasite–hielscherite solid-solution series". Mineralogical Magazine. 76 (5): 1133–1152. Bibcode:2012MinM...76.1133P. doi:10.1180/minmag.2012.076.5.06. ISSN 0026-461X. S2CID 101147914.
  16. ^ Ben Yahia, Hamdi; Shikano, Masahiro; Kobayashi, Hironori (2013). "Single crystal growth of the novel Mn2(OH)2SO3, Mn2F(OH)SO3, and Mn5(OH)4(H2O)2[SO3]2[SO4] compounds using a hydrothermal method". Dalton Transactions. 42 (19): 7158–66. doi:10.1039/c3dt50415h. ISSN 1477-9226. PMID 23525185.
  17. ^ Buchmeier, Willi; Engelen, Bernward; Lutz, Heinz Dieter (1988-01-01). "Kristallstruktur von Bariumsulfitsulfat, Ba(SO3)0,3(SO4)0,7 bzw. BaSO3,7". Zeitschrift für Kristallographie – Crystalline Materials. 183 (1–4): 43–50. doi:10.1524/zkri.1988.183.14.43. ISSN 2196-7105. S2CID 101933384.
  18. ^ Peterson, E. J.; Foltyn, E. M.; Onstott, E. I. (1980), McCarthy, Gregory J.; Rhyne, James J.; Silber, Herbert B. (eds.), "Preparation and Thermal Studies of a Cerium (III) Sulfite-Sulfate-Hydrate", The Rare Earths in Modern Science and Technology, Boston, MA: Springer US, pp. 65–66, doi:10.1007/978-1-4613-3054-7_11, ISBN 978-1-4613-3056-1
  19. ^ Rao, Chintamani Nagesa Ramachandra (2008). Trends in Chemistry of Materials: Selected Research Papers of C.N.R. Rao. World Scientific. pp. 382–388. ISBN 978-981-283-383-9.
  20. ^ Rao, K. Prabhakara; Rao, C. N. R. (April 2007). "Coordination Polymers and Hybrid Networks of Different Dimensionalities Formed by Metal Sulfites". Inorganic Chemistry. 46 (7): 2511–2518. doi:10.1021/ic061988m. ISSN 0020-1669. PMID 17326625.
  21. ^ Leskelä, Tuula; Leskelä, Markku; Niinistö, Lauri (May 1995). "Thermoanalytical studies on samarium sulfite sulfate hydrate". Thermochimica Acta. 256 (1): 67–73. doi:10.1016/0040-6031(94)02170-S.
  22. ^ Zhang, Zai-Chao; Wang, Jia-Hong; Zhao, Pu-Su (2011-05-15). "Dy 2 (SO 3 ) 2 (SO 4 )(H 2 O) 2 : the first lanthanide mixed sulfate–sulfite inorganic compound". Acta Crystallographica Section C Crystal Structure Communications. 67 (5): i27–i29. doi:10.1107/S0108270111009048. ISSN 0108-2701. PMID 21540523.
  23. ^ Abisheva, Z.S.; Parshina, I.N.; Bochevskaya, E.G.; Ushanov, V.Zh. (November 1998). "Chemical conversions of osmium (VI) sulfite complexes in ammonia–sulfate solutions". Hydrometallurgy. 50 (3): 269–278. doi:10.1016/S0304-386X(98)00059-0.
This page was last edited on 22 September 2022, at 11:53
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.