To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Sudan function

From Wikipedia, the free encyclopedia

In the theory of computation, the Sudan function is an example of a function that is recursive, but not primitive recursive. This is also true of the better-known Ackermann function.

In 1926, David Hilbert conjectured that every computable function was primitive recursive. This was refuted by Gabriel Sudan and Wilhelm Ackermann — both his students — using different functions that were published in quick succession: Sudan in 1927,[1] Ackermann in 1928.[2]

The Sudan function is the earliest published example of a recursive function that is not primitive recursive.[3]

Definition

The last equation can be equivalently written as

.[4]

Computation

These equations can be used as rules of a term rewriting system (TRS).

The generalized function leads to the rewrite rules

At each reduction step the rightmost innermost occurrence of F is rewritten, by application of one of the rules (r1) - (r3).

Calude (1988) gives an example: compute .[5]

The reduction sequence is[6]

    
    
    
    
    
    
    
    
    
    
    
    
    

Concrete implementations can be found on Rosetta Code.[7]

Value tables

Values of F0

F0(xy) = x + y

y \ x 0 1 2 3 4 5 6 7 8 9 10
0 0 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10 11
2 2 3 4 5 6 7 8 9 10 11 12
3 3 4 5 6 7 8 9 10 11 12 13
4 4 5 6 7 8 9 10 11 12 13 14
5 5 6 7 8 9 10 11 12 13 14 15
6 6 7 8 9 10 11 12 13 14 15 16
7 7 8 9 10 11 12 13 14 15 16 17
8 8 9 10 11 12 13 14 15 16 17 18
9 9 10 11 12 13 14 15 16 17 18 19
10 10 11 12 13 14 15 16 17 18 19 20

Values of F1

F1(xy) = 2y · (x + 2) − y − 2

y \ x 0 1 2 3 4 5 6 7 8 9 10
0 0 1 2 3 4 5 6 7 8 9 10
1 1 3 5 7 9 11 13 15 17 19 21
2 4 8 12 16 20 24 28 32 36 40 44
3 11 19 27 35 43 51 59 67 75 83 91
4 26 42 58 74 90 106 122 138 154 170 186
5 57 89 121 153 185 217 249 281 313 345 377
6 120 184 248 312 376 440 504 568 632 696 760
7 247 375 503 631 759 887 1015 1143 1271 1399 1527
8 502 758 1014 1270 1526 1782 2038 2294 2550 2806 3062
9 1013 1525 2037 2549 3061 3573 4085 4597 5109 5621 6133
10 2036 3060 4084 5108 6132 7156 8180 9204 10228 11252 12276

Values of F2

y \ x 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
x
1 F1 (F2(0, 0),  
F2(0, 0)+1)
F1 (F2(1, 0),  
F2(1, 0)+1)
F1 (F2(2, 0),  
F2(2, 0)+1)
F1 (F2(3, 0),  
F2(3, 0)+1)
F1 (F2(4, 0),  
F2(4, 0)+1)
F1 (F2(5, 0),  
F2(5, 0)+1)
F1 (F2(6, 0),  
F2(6, 0)+1)
F1 (F2(7, 0),  
F2(7, 0)+1)
F1(0, 1) F1(1, 2) F1(2, 3) F1(3, 4) F1(4, 5) F1(5, 6) F1(6, 7) F1(7, 8)
1 8 27 74 185 440 1015 2294
2x+1 · (x + 2) − x − 3
≈ 10lg 2·(x+1) + lg(x+2)
2 F1 (F2(0, 1),  
F2(0, 1)+2)
F1 (F2(1, 1),  
F2(1, 1)+2)
F1 (F2(2, 1),  
F2(2, 1)+2)
F1 (F2(3, 1),  
F2(3, 1)+2)
F1 (F2(4, 1),  
F2(4, 1)+2)
F1 (F2(5, 1),  
F2(5, 1)+2)
F1 (F2(6, 1),  
F2(6, 1)+2)
F1 (F2(7, 1),  
F2(7, 1)+2)
F1(1, 3) F1(8, 10) F1(27, 29) F1(74, 76) F1(185, 187) F1(440, 442) F1(1015, 1017) F1(2294, 2296)
19 10228 15569256417 ≈ 5,742397643 · 1024 ≈ 3,668181327 · 1058 ≈ 5,019729940 · 10135 ≈ 1,428323374 · 10309 ≈ 3,356154368 · 10694
22x+1·(x+2) − x − 1 · (2x+1·(x+2) − x − 1) − (2x+1·(x+2) − x + 1)
≈ 10lg 2 · (2x+1·(x+2) − x − 1) + lg(2x+1·(x+2) − x − 1) ≈ 10lg 2 · 2x+1·(x+2) + lg(2x+1·(x+2)) ≈ 10lg 2 · (2x+1·(x+2)) = 1010lg lg 2 + lg 2·(x+1) + lg(x+2) ≈ 1010lg 2·(x+1) + lg(x+2)
3 F1 (F2(0, 2),  
F2(0, 2)+3)
F1 (F2(1, 2),  
F2(1, 2)+3)
F1 (F2(2, 2),  
F2(2, 2)+3)
F1 (F2(3, 2),  
F2(3, 2)+3)
F1 (F2(4, 2),  
F2(4, 2)+3)
F1 (F2(5, 2),  
F2(5, 2)+3)
F1 (F2(6, 2),  
F2(6, 2)+3)
F1 (F2(7, 2),  
F2(7, 2)+3)
F1(F1(1,3),  
F1(1,3)+3)
F1(F1(8,10),  
F1(8,10)+3)
F1(F1(27,29),  
F1(27,29)+3)
F1(F1(74,76),  
F1(74,76)+3)
F1(F1(185,187),  
F1(185,187)+3)
F1(F1(440,442),  
F1(440,442)+3)
F1(F1(1015,1017),  
F1(1015,1017)+3)
F1(F1(2294,2297),  
F1(2294,2297)+3)
F1(19, 22) F1(10228, 10231) F1(15569256417,
15569256420)
F1(≈6·1024, ≈6·1024) F1(≈4·1058, ≈4·1058) F1(≈5·10135, ≈5·10135) F1(≈10309, ≈10309) F1(≈3·10694, ≈3·10694)
88080360 ≈ 7,04 · 103083 ≈ 7,82 · 104686813201 ≈ 101,72·1024 ≈ 101,10·1058 ≈ 101,51·10135 ≈ 104,30·10308 ≈ 101,01·10694
longer expression, starts with 222x+1 an, ≈ 101010lg 2·(x+1) + lg(x+2)
4 F1 (F2(0, 3),  
F2(0, 3)+4)
F1 (F2(1, 3),  
F2(1, 3)+4)
F1 (F2(2, 3),  
F2(2, 3)+4)
F1 (F2(3, 3),  
F2(3, 3)+4)
F1 (F2(4, 3),  
F2(4, 3)+4)
F1 (F2(5, 3),  
F2(5, 3)+4)
F1 (F2(6, 3),  
F2(6, 3)+4)
F1 (F2(7, 3),  
F2(7, 3)+4)
F1 (F1(19, 22),  
F1(19, 22)+4)
F1 (F1(10228,  
10231),  
F1(10228,  
10231)+4)
F1 (F1(15569256417,  
15569256420),  
F1(15569256417,  
15569256420)+4)
F1 (F1(≈5,74·1024, ≈5,74·1024),
F1(≈5,74·1024, ≈5,74·1024))
F1 (F1(≈3,67·1058, ≈3,67·1058),
F1(≈3,67·1058, ≈3,67·1058))
F1 (F1(≈5,02·10135, ≈5,02·10135),
F1(≈5,02·10135, ≈5,02·10135))
F1 (F1(≈1,43·10309, ≈1,43·10309),
F1(≈1,43·10309, ≈1,43·10309))
F1 (F1(≈3,36·10694, ≈3,36·10694),
F1(≈3,36·10694, ≈3,36·10694))
F1(88080360,
88080364)
F1(10230·210231−10233,
10230·210231−10229)
≈ 3,5 · 1026514839
much longer expression, starts with 2222x+1 an, ≈ 10101010lg 2·(x+1) + lg(x+2)

Values of F3

y \ x 0 1 2 3 4
0 0 1 2 3 4
x
1 F2 (F3(0, 0),  
F3(0, 0)+1)
F2 (F3(1, 0),  
F3(1, 0)+1)
F2 (F3(2, 0),  
F3(2, 0)+1)
F2 (F3(3, 0),  
F3(3, 0)+1)
F2 (F3(4, 0),  
F3(4, 0)+1)
F2(0, 1) F2(1, 2) F2(2, 3) F2(3, 4) F2(4, 5)
1 10228 ≈ 7,82 · 104686813201
No closed expressions possible within the framework of normal mathematical notation
2 F3 (F4(0, 1),  
F4(0, 1)+2)
F3 (F4(1, 1),  
F4(1, 1)+2)
F3 (F4(2, 1),  
F4(2, 1)+2)
F3 (F4(3, 1),  
F4(3, 1)+2)
F3 (F4(4, 1),  
F4(4, 1)+2)
F3 (1, 3) F3 (10228, 10230) F3 (≈104686813201
≈104686813201)
 
No closed expressions possible within the framework of normal mathematical notation

Notes and references

  1. ^ Sudan 1927.
  2. ^ Ackermann 1928.
  3. ^ Calude, Marcus & Tevy 1979.
  4. ^ Calude 1988, p. 92.
  5. ^ Calude 1988, pp. 92–95.
  6. ^ The rightmost innermost occurrences of F are underlined.
  7. ^ Rosetta Code.

Bibliography

  • Ackermann, Wilhelm (1928). "Zum Hilbertschen Aufbau der reellen Zahlen". Mathematische Annalen. 99: 118–133. doi:10.1007/BF01459088. JFM 54.0056.06. S2CID 123431274.
  • Sudan, Gabriel (1927). "Sur le nombre transfini ωω". Bulletin mathématique de la Société Roumaine des Sciences. 30: 11–30. JFM 53.0171.01. JSTOR 43769875. Jbuch 53, 171

External links

This page was last edited on 19 February 2024, at 09:11
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.