To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time. 4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds Successor ordinal

In set theory, the successor of an ordinal number α is the smallest ordinal number greater than α. An ordinal number that is a successor is called a successor ordinal.

Properties

Every ordinal other than 0 is either a successor ordinal or a limit ordinal.

In Von Neumann's model

Using von Neumann's ordinal numbers (the standard model of the ordinals used in set theory), the successor S(α) of an ordinal number α is given by the formula

$S(\alpha )=\alpha \cup \{\alpha \}.$ Since the ordering on the ordinal numbers is given by α < β if and only if α ∈ β, it is immediate that there is no ordinal number between α and S(α), and it is also clear that α < S(α).

The successor operation can be used to define ordinal addition rigorously via transfinite recursion as follows:

$\alpha +0=\alpha \!$ $\alpha +S(\beta )=S(\alpha +\beta )$ and for a limit ordinal λ

$\alpha +\lambda =\bigcup _{\beta <\lambda }(\alpha +\beta )$ In particular, S(α) = α + 1. Multiplication and exponentiation are defined similarly.

Topology

The successor points and zero are the isolated points of the class of ordinal numbers, with respect to the order topology.