To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

From Wikipedia, the free encyclopedia

Comparing the size of Earth, Mars, and exoplanets of Kepler-20 and Kepler-42.
Comparing the size of Earth, Mars, and exoplanets of Kepler-20 and Kepler-42.

A sub-Earth is a planet "substantially less massive" than Earth and Venus.[1] In the Solar System, this category includes Mercury and Mars. Sub-Earth exoplanets are among the most difficult type to detect because their small sizes and masses produce the weakest signal. Despite the difficulty, one of the first exoplanets found was a sub-Earth around a millisecond pulsar PSR B1257+12. The smallest known is WD 1145+017 b with a size of 0.15 Earth radii, or somewhat smaller than Pluto. However, WD 1145+017 b is a dwarf planet as it orbits within a cloud of dust and gas.[2]

The Kepler space telescope opened the realm of sub-Earths by its discovery of them. On January 10, 2012, Kepler discovered the first three sub-Earths around an ordinary star, Kepler-42. As of June 2014, Kepler has 45 confirmed planets that are smaller than Earth, with 17 of them being smaller than 0.8 R. In addition, there are over 310 planet candidates with an estimated radius of <1R, with 135 of them being smaller than 0.8 R.[1][3]

Sub-Earths commonly lack substantial atmospheres because of their low gravity and weak magnetic fields, allowing stellar radiation to wear away their atmospheres.[1] Due to their small sizes, and unless there are significant tidal forces when orbiting close to the parent star, sub-Earths also have short periods of geologic activity.


  1. ^ a b c Sinukoff, E.; Fulton, B.; Scuderi, L.; Gaidos, E. (2013-08-28). "Below One Earth Mass: The Detection, Formation, and Properties of Subterrestrial Worlds". Space Science Reviews. 180: 71–99. arXiv:1308.6308. Bibcode:2013SSRv..180...71S. doi:10.1007/s11214-013-0019-1.
  2. ^ Rappaport, S.; Gary, B. L.; Kaye, T.; Vanderburg, A.; Croll, B.; Benni, P.; Foote, J. (June 2016). "Drifting asteroid fragments around WD 1145+017". Monthly Notices of the Royal Astronomical Society. 458 (4): 3904–3917. arXiv:1602.00740. doi:10.1093/mnras/stw612.
  3. ^ NASA Exoplanet Archive
This page was last edited on 31 October 2018, at 03:23
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.