To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

CYP27A1
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesCYP27A1, CP27, CTX, CYP27, cytochrome P450 family 27 subfamily A member 1
External IDsOMIM: 606530; MGI: 88594; HomoloGene: 36040; GeneCards: CYP27A1; OMA:CYP27A1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000784

NM_024264

RefSeq (protein)

NP_000775

NP_077226

Location (UCSC)Chr 2: 218.78 – 218.82 MbChr 1: 74.75 – 74.78 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

CYP27A1 is a gene encoding a cytochrome P450 oxidase, and is commonly known as sterol 27-hydroxylase. This enzyme is located in many different tissues where it is found within the mitochondria. It is most prominently involved in the biosynthesis of bile acids.

YouTube Encyclopedic

  • 1/2
    Views:
    1 633
    518
  • Vitamin D | Biosynthesis & the Vitamin D Receptor
  • Liver enzymes inducers and inhibitors

Transcription

Function

CYP27A1 participates in the degradation of cholesterol to bile acids in both the classic and acidic pathways.[5] It is the initiating enzyme in the acidic pathway to bile acids, yielding oxysterols by introducing a hydroxyl group to the carbon at the 27 position in cholesterol. In the acidic pathway, it produces 27-hydroxycholesterol from cholesterol whereas in the classic or neutral pathway, it produces 3β-hydroxy-5-cholestenoic acid.

While CYP27A1 is present in many different tissues, its function in these tissues is largely uncharacterized. In macrophages, 27-hydroxycholesterol generated by this enzyme may be helpful against the production of inflammatory factors associated with cardiovascular disease.[6]

Clinical significance

Mutations in CYP27A1 are associated with cerebrotendineous xanthomatosis, a rare lipid storage disease.

Inhibitors of CYP27A1 may be effective as adjuvants in the treatment of ER-positive breast cancer due to inhibition of the production of 27-hydroxycholesterol (which has estrogenic actions and stimulates the growth of ER-positive breast cancer cells).[7] Some marketed drugs that have been identified as CYP27A1 inhibitors include anastrozole, fadrozole, bicalutamide, dexmedetomidine, ravuconazole, and posaconazole.[7]

Interactive pathway map

Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

[[File:
VitaminDSynthesis_WP1531Go to articleGo to articleGo to articleGo to articlego to articleGo to articleGo to articleGo to articlego to articlego to articlego to articlego to articleGo to articleGo to articlego to articleGo to articlego to articlego to articlego to articleGo to articlego to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
VitaminDSynthesis_WP1531Go to articleGo to articleGo to articleGo to articlego to articleGo to articleGo to articleGo to articlego to articlego to articlego to articlego to articleGo to articleGo to articlego to articleGo to articlego to articlego to articlego to articleGo to articlego to article
|alt=Vitamin D Synthesis Pathway (view / edit)]]
Vitamin D Synthesis Pathway (view / edit)
  1. ^ The interactive pathway map can be edited at WikiPathways: "VitaminDSynthesis_WP1531".

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000135929Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000026170Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Chiang JY (February 1998). "Regulation of bile acid synthesis". Frontiers in Bioscience. 3 (4): d176-93. doi:10.2741/a273. PMID 9450986.
  6. ^ Taylor JM, Borthwick F, Bartholomew C, Graham A (June 2010). "Overexpression of steroidogenic acute regulatory protein increases macrophage cholesterol efflux to apolipoprotein AI". Cardiovascular Research. 86 (3): 526–34. doi:10.1093/cvr/cvq015. PMID 20083572.
  7. ^ a b Mast N, Lin JB, Pikuleva IA (September 2015). "Marketed Drugs Can Inhibit Cytochrome P450 27A1, a Potential New Target for Breast Cancer Adjuvant Therapy". Molecular Pharmacology. 88 (3): 428–36. doi:10.1124/mol.115.099598. PMC 4551053. PMID 26082378.

Further reading

External links

This page was last edited on 15 December 2023, at 05:00
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.