To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Steinhaus–Moser notation

From Wikipedia, the free encyclopedia

In mathematics, Steinhaus–Moser notation is a notation for expressing certain large numbers. It is an extension (devised by Leo Moser) of Hugo Steinhaus's polygon notation.[1]

YouTube Encyclopedic

  • 1/5
    Views:
    3 868
    24 051
    1 882
    2 820
    834
  • How big are Mega, Megiston, Moser Numbers (Steinhaus - Moser Notation)
  • Katie's #MegaFavNumbers - the MEGISTON, and Steinhaus-Moser notation
  • Fastest growing functions Ranking (Using Fast growing hierarchy)
  • Knuth's Up Arrow Notation - Exponentiation on Steroids
  • Una forma de escribir números enormes

Transcription

Definitions

n in a triangle
a number n in a triangle means nn.
n in a square
a number n in a square is equivalent to "the number n inside n triangles, which are all nested."
n in a pentagon
a number n in a pentagon is equivalent with "the number n inside n squares, which are all nested."

etc.: n written in an (m + 1)-sided polygon is equivalent with "the number n inside n nested m-sided polygons". In a series of nested polygons, they are associated inward. The number n inside two triangles is equivalent to nn inside one triangle, which is equivalent to nn raised to the power of nn.

Steinhaus defined only the triangle, the square, and the circle

n in a circle, which is equivalent to the pentagon defined above.

Special values

Steinhaus defined:

  • mega is the number equivalent to 2 in a circle:
  • megiston is the number equivalent to 10 in a circle: ⑩

Moser's number is the number represented by "2 in a megagon". Megagon is here the name of a polygon with "mega" sides (not to be confused with the polygon with one million sides).

Alternative notations:

  • use the functions square(x) and triangle(x)
  • let M(n, m, p) be the number represented by the number n in m nested p-sided polygons; then the rules are:
  • and
    • mega = 
    • megiston = 
    • moser = 

Mega

A mega, ②, is already a very large number, since ② = square(square(2)) = square(triangle(triangle(2))) = square(triangle(22)) = square(triangle(4)) = square(44) = square(256) = triangle(triangle(triangle(...triangle(256)...))) [256 triangles] = triangle(triangle(triangle(...triangle(256256)...))) [255 triangles] ~ triangle(triangle(triangle(...triangle(3.2317 × 10616)...))) [255 triangles] ...

Using the other notation:

mega = M(2,1,5) = M(256,256,3)

With the function we have mega = where the superscript denotes a functional power, not a numerical power.

We have (note the convention that powers are evaluated from right to left):

  • M(256,2,3) =
  • M(256,3,3) =

Similarly:

  • M(256,4,3) ≈
  • M(256,5,3) ≈
  • M(256,6,3) ≈

etc.

Thus:

  • mega = , where denotes a functional power of the function .

Rounding more crudely (replacing the 257 at the end by 256), we get mega ≈ , using Knuth's up-arrow notation.

After the first few steps the value of is each time approximately equal to . In fact, it is even approximately equal to (see also approximate arithmetic for very large numbers). Using base 10 powers we get:

  • ( is added to the 616)
  • ( is added to the , which is negligible; therefore just a 10 is added at the bottom)

...

  • mega = , where denotes a functional power of the function . Hence

Moser's number

It has been proven that in Conway chained arrow notation,

and, in Knuth's up-arrow notation,

Therefore, Moser's number, although incomprehensibly large, is vanishingly small compared to Graham's number:[2]

See also

References

  1. ^ Hugo Steinhaus, Mathematical Snapshots, Oxford University Press 19693, ISBN 0195032675, pp. 28-29
  2. ^ Proof that G >> M

External links

This page was last edited on 5 July 2023, at 23:04
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.