To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Starred transform

From Wikipedia, the free encyclopedia

In applied mathematics, the starred transform, or star transform, is a discrete-time variation of the Laplace transform, so-named because of the asterisk or "star" in the customary notation of the sampled signals. The transform is an operator of a continuous-time function , which is transformed to a function in the following manner:[1]

where is a Dirac comb function, with period of time T.

The starred transform is a convenient mathematical abstraction that represents the Laplace transform of an impulse sampled function , which is the output of an ideal sampler, whose input is a continuous function, .

The starred transform is similar to the Z transform, with a simple change of variables, where the starred transform is explicitly declared in terms of the sampling period (T), while the Z transform is performed on a discrete signal and is independent of the sampling period. This makes the starred transform a de-normalized version of the one-sided Z-transform, as it restores the dependence on sampling parameter T.

YouTube Encyclopedic

  • 1/3
    Views:
    301 312
    481 266
    5 218
  • Control Systems Lectures - Transfer Functions
  • Introduction to the convolution | Laplace transform | Differential Equations | Khan Academy
  • #9 3D Software Rendering Tutorial: Transform Framework

Transcription

Relation to Laplace transform

Since , where:

Then per the convolution theorem, the starred transform is equivalent to the complex convolution of and , hence:[1]

This line integration is equivalent to integration in the positive sense along a closed contour formed by such a line and an infinite semicircle that encloses the poles of X(s) in the left half-plane of p. The result of such an integration (per the residue theorem) would be:

Alternatively, the aforementioned line integration is equivalent to integration in the negative sense along a closed contour formed by such a line and an infinite semicircle that encloses the infinite poles of in the right half-plane of p. The result of such an integration would be:

Relation to Z transform

Given a Z-transform, X(z), the corresponding starred transform is a simple substitution:

 [2]

This substitution restores the dependence on T.

It's interchangeable,[citation needed]

 
 

Properties of the starred transform

Property 1:   is periodic in with period

Property 2:  If has a pole at , then must have poles at , where

Citations

  1. ^ a b Jury, Eliahu I. Analysis and Synthesis of Sampled-Data Control Systems., Transactions of the American Institute of Electrical Engineers- Part I: Communication and Electronics, 73.4, 1954, p. 332-346.
  2. ^ Bech, p 9

References

  • Bech, Michael M. "Digital Control Theory" (PDF). AALBORG University. Retrieved 5 February 2014.
  • Gopal, M. (March 1989). Digital Control Engineering. John Wiley & Sons. ISBN 0852263082.
  • Phillips and Nagle, "Digital Control System Analysis and Design", 3rd Edition, Prentice Hall, 1995. ISBN 0-13-309832-X
This page was last edited on 9 May 2020, at 15:35
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.