To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Sphere of influence (black hole)

From Wikipedia, the free encyclopedia

The sphere of influence is a region around a supermassive black hole in which the gravitational potential of the black hole dominates the gravitational potential of the host galaxy. The radius of the sphere of influence is called the "(gravitational) influence radius".

There are two definitions in common use for the radius of the sphere of influence. The first[1] is given by

where MBH is the mass of the black hole, σ is the stellar velocity dispersion of the host bulge, and G is the gravitational constant.

The second definition[2] is the radius at which the enclosed mass in stars equals twice MBH, i.e.

Which definition is most appropriate depends on the physical question that is being addressed. The first definition takes into account the bulge's overall effect on the motion of a star, since is determined in part by stars that have moved far from the black hole. The second definition compares the force from the black hole to the local force from the stars.

It is a minimum requirement that the sphere of influence be well resolved in order that the mass of the black hole be determined dynamically.[3]

YouTube Encyclopedic

  • 1/3
    Views:
    999 840
    431 403
    1 027 629
  • What Happens at the Event Horizon? | Space Time | PBS Digital Studios
  • Black Holes from the Dawn of Time | Space Time | PBS Digital Studios
  • How the Quantum Eraser Rewrites the Past | Space Time | PBS Digital Studios

Transcription

Rotational influence sphere

If the black hole is rotating, there is a second radius of influence associated with the rotation.[4] This is the radius inside of which the Lense-Thirring torques from the black hole are larger than the Newtonian torques between stars. Inside the rotational influence sphere, stellar orbits precess at approximately the Lense-Thirring rate; while outside this sphere, orbits evolve predominantly in response to perturbations from stars on other orbits. Assuming that the Milky Way black hole is maximally rotating, its rotational influence radius is about 0.001 parsec,[5] while its radius of gravitational influence is about 3 parsecs.

See also

References

  1. ^ Peebles, J. (December 1972). "Star Distribution Near a Collapsed Object". The Astrophysical Journal. 178: 371–376. Bibcode:1972ApJ...178..371P. doi:10.1086/151797.
  2. ^ Merritt, David (2004). "Single and Binary Black Holes and their Influence on Nuclear Structure". In Ho, Luis (ed.). Coevolution of Black Holes and Galaxies. Carnegie Observatories Astrophysics Series. Vol. 1. Cambridge University Press. pp. 263–275. arXiv:astro-ph/0301257. Bibcode:2004cbhg.symp..263M.
  3. ^ Ferrarese, Laura; Ford, Holland (2005). "Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research". Space Science Reviews. 116 (3–4): 523–624. arXiv:astro-ph/0411247. Bibcode:2005SSRv..116..523F. doi:10.1007/s11214-005-3947-6. S2CID 119091861.
  4. ^ Merritt, D. (2013). Dynamics and Evolution of Galactic Nuclei. Princeton, NJ: Princeton University Press. p. 284. ISBN 9781400846122.
  5. ^ Merritt D, Alexander T, Mikkola S, Will C (2010). "Testing properties of the Galactic center black hole using stellar orbits". Physical Review D. 81 (6): 062002. arXiv:0911.4718. Bibcode:2010PhRvD..81f2002M. doi:10.1103/PhysRevD.81.062002. S2CID 118646069.
This page was last edited on 5 April 2024, at 05:03
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.