To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Spalart–Allmaras turbulence model

From Wikipedia, the free encyclopedia

In physics, the Spalart–Allmaras model is a one-equation model that solves a modelled transport equation for the kinematic eddy turbulent viscosity. The Spalart–Allmaras model was designed specifically for aerospace applications involving wall-bounded flows and has been shown to give good results for boundary layers subjected to adverse pressure gradients. It is also gaining popularity in turbomachinery applications.

In its original form, the model is effectively a low-Reynolds number model, requiring the viscosity-affected region of the boundary layer to be properly resolved ( y+ ~1 meshes). The Spalart–Allmaras model was developed for aerodynamic flows. It is not calibrated for general industrial flows, and does produce relatively larger errors for some free shear flows, especially plane and round jet flows. In addition, it cannot be relied on to predict the decay of homogeneous, isotropic turbulence.

It solves a transport equation for a viscosity-like variable . This may be referred to as the Spalart–Allmaras variable.

YouTube Encyclopedic

  • 1/5
    Views:
    7 319
    593
    28 616
    11 941
    46 574
  • [CFD] The Spalart-Allmaras Turbulence Model
  • [Fluid Dynamics: Turbulence Models] One-equation turbulence models
  • [CFD] The k - omega SST Turbulence Model
  • 5 Quick Tips For More Accurate Airfoil CFD Simulations (ANSYS Fluent Tutorial)
  • [CFD] The k - epsilon Turbulence Model

Transcription

Original model

The turbulent eddy viscosity is given by

The rotation tensor is given by

where d is the distance from the closest surface and is the norm of the difference between the velocity at the trip (usually zero) and that at the field point we are considering.

The constants are

Modifications to original model

According to Spalart it is safer to use the following values for the last two constants:

Other models related to the S-A model:

DES (1999) [1]

DDES (2006)

Model for compressible flows

There are several approaches to adapting the model for compressible flows.

In all cases, the turbulent dynamic viscosity is computed from

where is the local density.

The first approach applies the original equation for .

In the second approach, the convective terms in the equation for are modified to

where the right hand side (RHS) is the same as in the original model.[citation needed]

The third approach involves inserting the density inside some of the derivatives on the LHS and RHS.

The second and third approaches are not recommended by the original authors, but they are found in several solvers.

Boundary conditions

Walls:

Freestream:

Ideally , but some solvers can have problems with a zero value, in which case can be used.

This is if the trip term is used to "start up" the model. A convenient option is to set in the freestream. The model then provides "Fully Turbulent" behavior, i.e., it becomes turbulent in any region that contains shear.

Outlet: convective outlet.

References

  • Spalart, P. R. and Allmaras, S. R., 1992, "A One-Equation Turbulence Model for Aerodynamic Flows" AIAA Paper 92-0439

External links

This page was last edited on 8 July 2023, at 18:20
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.