To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Solenoidal vector field

From Wikipedia, the free encyclopedia

An example of a solenoidal vector field,  v ( x , y ) = ( y , − x ) {\displaystyle \mathbf {v} (x,y)=(y,-x)}
An example of a solenoidal vector field,

In vector calculus a solenoidal vector field (also known as an incompressible vector field, a divergence-free vector field, or a transverse vector field) is a vector field v with divergence zero at all points in the field:

A common way of expressing this property is to say that the field has no sources or sinks.[note 1]

Properties

The divergence theorem gives an equivalent integral definition of a solenoidal field; namely that for any closed surface, the net total flux through the surface must be zero:

\oiint ,

where is the outward normal to each surface element.

The fundamental theorem of vector calculus states that any vector field can be expressed as the sum of an irrotational and a solenoidal field. The condition of zero divergence is satisfied whenever a vector field v has only a vector potential component, because the definition of the vector potential A as:

automatically results in the identity (as can be shown, for example, using Cartesian coordinates):

The converse also holds: for any solenoidal v there exists a vector potential A such that (Strictly speaking, this holds subject to certain technical conditions on v, see Helmholtz decomposition.)

Etymology

Solenoidal has its origin in the Greek word for solenoid, which is σωληνοειδές (sōlēnoeidēs) meaning pipe-shaped, from σωλην (sōlēn) or pipe. In the present context of solenoidal it means constrained as if in a pipe, so with a fixed volume.

Examples

See also

Notes

  1. ^ This statement does not mean that the field lines of a solenoidal field must be closed, neither that they cannot begin or end. For a detailed discussion of the subject, see J. Slepian: "Lines of Force in Electric and Magnetic Fields", American Journal of Physics, vol. 19, pp. 87-90, 1951, and L. Zilberti: "The Misconception of Closed Magnetic Flux Lines", IEEE Magnetics Letters, vol. 8, art. 1306005, 2017.

References

  • Aris, Rutherford (1989), Vectors, tensors, and the basic equations of fluid mechanics, Dover, ISBN 0-486-66110-5
This page was last edited on 19 May 2021, at 03:17
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.