To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Solar eclipse of June 19, 1936

From Wikipedia, the free encyclopedia

Solar eclipse of June 19, 1936
Map
Type of eclipse
NatureTotal
Gamma0.5389
Magnitude1.0329
Maximum eclipse
Duration151 s (2 min 31 s)
Coordinates56°06′N 104°42′E / 56.1°N 104.7°E / 56.1; 104.7
Max. width of band132 km (82 mi)
Times (UTC)
Greatest eclipse5:20:31
References
Saros126 (43 of 72)
Catalog # (SE5000)9367
Astronomers in Turkey observing the 1936 eclipse

A total solar eclipse occurred at the Moon's descending node on Friday, June 19, 1936 (Thursday, June 18, 1936 east of the International Date Line). A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality crossed Europe and Asia. The full phase could be seen in Greece, Turkey, USSR, China and the Japanese island of Hokkaido. The maximum eclipse was near Bratsk and lasted about 2.5 minutes. The Sun was 57 degrees above horizon, gamma had a value of 0.539, and the eclipse was part of Solar Saros 126.

The Evening Standard reported that the "preparations for to-day's eclipse have been going forward for the past two years", and that a British expedition led by amateur astronomer R. L. Waterfield saw "excellent atmospheric conditions" from its observation point on Cap Sunium.[1] Similar observations were made by teams in Hokkaido, some hours later, allowing their observations of the Sun's corona to be compared "to find out whether any changes in shape or in detail of the corona have taken place in this interval".[1] A Russian team in Krasnoyarsk reported successful observation from a high-altitude balloon, where scientists "hoped to make observations at a height of some 15 miles".[1] There were also observers in the south of Greece, from Greece, Italy and Poland, the latter of which were "successful in obtaining cinematograph pictures of the eclipse".[1] Several long prominences (more than a million miles long) were observed, as well as the planet Venus.[1]

A United States expedition in Siberia conducted experiments on the ionosphere, with the Associated Press reporting that "indications that the earth's electrified roof, which, many miles above the surface of the globe, reflects back radio impulses, is formed mostly as a result of ultra-violet sun radiations appeared in preliminary results of the solar eclipse observations".[2]

YouTube Encyclopedic

  • 1/5
    Views:
    3 022
    850 414
    976
    1 292
    4 129
  • Occupation of Troyon Sector, Oct. 26 - Nov. 11, 1918--33rd Division
  • The deadliest accident in motorsport history
  • Film and the teaching of history - Lancaster University Public Lecture
  • Butte's Mom and Pop Grocery Stores
  • "Loving Rebel: Helen Hunt Jackson, 1830-1885"

Transcription

Related eclipses

Solar eclipses 1935–1938

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]

Solar eclipse series sets from 1935 to 1938
Ascending node   Descending node
111 January 5, 1935

Partial
116 June 30, 1935

Partial
121 December 25, 1935

Annular
126 June 19, 1936

Total
131 December 13, 1936

Annular
136 June 8, 1937

Total
141 December 2, 1937

Annular
146 May 29, 1938

Total
151 November 21, 1938

Partial

Saros 126

It is a part of Saros cycle 126, repeating every 18 years, 11 days, containing 72 events. The series started with partial solar eclipse on March 10, 1179. It contains annular eclipses from June 4, 1323 through April 4, 1810, hybrid eclipses from April 14, 1828 through May 6, 1864 and total eclipses from May 17, 1882 through August 23, 2044. The series ends at member 72 as a partial eclipse on May 3, 2459. The longest duration of central eclipse (annular or total) was 6 minutes, 30 seconds of annularity on June 26, 1359. The longest duration of totality was 2 minutes, 36 seconds on July 10, 1972. All eclipses in this series occurs at the Moon’s descending node.

Series members 42–52 occur between 1901 and 2100
42 43 44

June 8, 1918

June 19, 1936

June 30, 1954
45 46 47

July 10, 1972

July 22, 1990

August 1, 2008
48 49 50

August 12, 2026

August 23, 2044

September 3, 2062
51 52

September 13, 2080

September 25, 2098

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days).

Notes

  1. ^ a b c d e "What the eclipse revealed". Evening Standard. London, Greater London, England. 1936-06-19. p. 14. Retrieved 2023-10-17 – via Newspapers.com.
  2. ^ "Solar Eclipse Seen Clearly By U.S. Scientists in Siberia". The Buffalo News. Buffalo, New York. 1936-06-20. p. 2. Retrieved 2023-10-17 – via Newspapers.com.
  3. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.

References

This page was last edited on 14 April 2024, at 04:34
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.