To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Small stellated dodecahedron

From Wikipedia, the free encyclopedia

Small stellated dodecahedron
Type Kepler–Poinsot polyhedron
Stellation core regular dodecahedron
Elements F = 12, E = 30
V = 12 (χ = -6)
Faces by sides 12 5
Schläfli symbol {52,5}
Face configuration V(55)/2
Wythoff symbol 5 | 2 52
Coxeter diagram
Symmetry group Ih, H3, [5,3], (*532)
References U34, C43, W20
Properties Regular nonconvex

(52)5
(Vertex figure)

Great dodecahedron
(dual polyhedron)
3D model of a small stellated dodecahedron

In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol {52,5}. It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeting at each vertex.

It shares the same vertex arrangement as the convex regular icosahedron. It also shares the same edge arrangement with the great icosahedron, with which it forms a degenerate uniform compound figure.

It is the second of four stellations of the dodecahedron (including the original dodecahedron itself).

The small stellated dodecahedron can be constructed analogously to the pentagram, its two-dimensional analogue, via the extension of the edges (1-faces) of the core polytope until a point is reached where they intersect.

YouTube Encyclopedic

  • 1/5
    Views:
    6 040
    8 286
    897
    580
    13 142
  • Tutorial: Small Stellated Dodecahedron (Zen Magnets)
  • Flexy Small Stellated Dodecahedron
  • Small Stellated Dodecahedron (Zen Magnets)
  • Building a Dodecahedron (Normal and Stellated) - Long!!
  • Tutorial: Great Stellated Dodecahedron (Zen Magnets)

Transcription

Topology

If the pentagrammic faces are considered as 5 triangular faces, it shares the same surface topology as the pentakis dodecahedron, but with much taller isosceles triangle faces, with the height of the pentagonal pyramids adjusted so that the five triangles in the pentagram become coplanar. The critical angle is atan(2) above the dodecahedron face.

If we regard it as having 12 pentagrams as faces, with these pentagrams meeting at 30 edges and 12 vertices, we can compute its genus using Euler's formula

and conclude that the small stellated dodecahedron has genus 4. This observation, made by Louis Poinsot, was initially confusing, but Felix Klein showed in 1877 that the small stellated dodecahedron could be seen as a branched covering of the Riemann sphere by a Riemann surface of genus 4, with branch points at the center of each pentagram. In fact this Riemann surface, called Bring's curve, has the greatest number of symmetries of any Riemann surface of genus 4: the symmetric group acts as automorphisms[1]

Images

Transparent model Handmade models

(See also: animated)
Spherical tiling Stellation Net

This polyhedron also represents a spherical tiling with a density of 3. (One spherical pentagram face, outlined in blue, filled in yellow)

It can also be constructed as the first of three stellations of the dodecahedron, and referenced as Wenninger model [W20].
× 12

Small stellated dodecahedra can be constructed out of paper or cardstock by connecting together 12 five-sided isosceles pyramids in the same manner as the pentagons in a regular dodecahedron. With an opaque material, this visually represents the exterior portion of each pentagrammic face.

In art

Floor mosaic by Paolo Uccello, 1430

A small stellated dodecahedron can be seen in a floor mosaic in St Mark's Basilica, Venice by Paolo Uccello c. 1430.[2] The same shape is central to two lithographs by M. C. Escher: Contrast (Order and Chaos) (1950) and Gravitation (1952).[3]

Formulas

For a small stellated dodecahedron with edge length E,

Related polyhedra

Animated truncation sequence from {52, 5} to {5, 52}

Its convex hull is the regular convex icosahedron. It also shares its edges with the great icosahedron; the compound with both is the great complex icosidodecahedron.

There are four related uniform polyhedra, constructed as degrees of truncation. The dual is a great dodecahedron. The dodecadodecahedron is a rectification, where edges are truncated down to points.

The truncated small stellated dodecahedron can be considered a degenerate uniform polyhedron since edges and vertices coincide, but it is included for completeness. Visually, it looks like a regular dodecahedron on the surface, but it has 24 faces in overlapping pairs. The spikes are truncated until they reach the plane of the pentagram beneath them. The 24 faces are 12 pentagons from the truncated vertices and 12 decagons taking the form of doubly-wound pentagons overlapping the first 12 pentagons. The latter faces are formed by truncating the original pentagrams. When an {nd}-gon is truncated, it becomes a {2nd}-gon. For example, a truncated pentagon {51} becomes a decagon {101}, so truncating a pentagram {52} becomes a doubly-wound pentagon {102} (the common factor between 10 and 2 mean we visit each vertex twice to complete the polygon).

Stellations of the dodecahedron
Platonic solid Kepler–Poinsot solids
Dodecahedron Small stellated dodecahedron Great dodecahedron Great stellated dodecahedron
Name Small stellated dodecahedron Truncated small stellated dodecahedron Dodecadodecahedron Truncated
great
dodecahedron
Great
dodecahedron
Coxeter-Dynkin
diagram
Picture

See also

References

  1. ^ Weber, Matthias (2005). "Kepler's small stellated dodecahedron as a Riemann surface". Pacific J. Math. Vol. 220. pp. 167–182. pdf
  2. ^ Coxeter, H. S. M. (2013). "Regular and semiregular polyhedra". In Senechal, Marjorie (ed.). Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical Imagination (2nd ed.). Springer. pp. 41–52. doi:10.1007/978-0-387-92714-5_3. See in particular p. 42.
  3. ^ Barnes, John (2012). Gems of Geometry (2nd ed.). Springer. p. 46.

Further reading

External links

This page was last edited on 14 February 2024, at 07:32
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.