To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Slutsky's theorem

From Wikipedia, the free encyclopedia

In probability theory, Slutsky's theorem extends some properties of algebraic operations on convergent sequences of real numbers to sequences of random variables.[1]

The theorem was named after Eugen Slutsky.[2] Slutsky's theorem is also attributed to Harald Cramér.[3]

YouTube Encyclopedic

  • 1/3
    Views:
    426
    4 409
    46 498
  • ims51 - Limiting Distributions(7/7): Slutsky's Theorem & Delta Method
  • Basic Limit Theorems (10/11): Slutsky's Theorem
  • Slutsky Equation: The Derivation

Transcription

Statement

Let be sequences of scalar/vector/matrix random elements. If converges in distribution to a random element and converges in probability to a constant , then

  •   provided that c is invertible,

where denotes convergence in distribution.

Notes:

  1. The requirement that Yn converges to a constant is important — if it were to converge to a non-degenerate random variable, the theorem would be no longer valid. For example, let and . The sum for all values of n. Moreover, , but does not converge in distribution to , where , , and and are independent.[4]
  2. The theorem remains valid if we replace all convergences in distribution with convergences in probability.

Proof

This theorem follows from the fact that if Xn converges in distribution to X and Yn converges in probability to a constant c, then the joint vector (Xn, Yn) converges in distribution to (Xc) (see here).

Next we apply the continuous mapping theorem, recognizing the functions g(x,y) = x + y, g(x,y) = xy, and g(x,y) = x y−1 are continuous (for the last function to be continuous, y has to be invertible).

See also

References

  1. ^ Goldberger, Arthur S. (1964). Econometric Theory. New York: Wiley. pp. 117–120.
  2. ^ Slutsky, E. (1925). "Über stochastische Asymptoten und Grenzwerte". Metron (in German). 5 (3): 3–89. JFM 51.0380.03.
  3. ^ Slutsky's theorem is also called Cramér's theorem according to Remark 11.1 (page 249) of Gut, Allan (2005). Probability: a graduate course. Springer-Verlag. ISBN 0-387-22833-0.
  4. ^ See Zeng, Donglin (Fall 2018). "Large Sample Theory of Random Variables (lecture slides)" (PDF). Advanced Probability and Statistical Inference I (BIOS 760). University of North Carolina at Chapel Hill. Slide 59.

Further reading

  • Casella, George; Berger, Roger L. (2001). Statistical Inference. Pacific Grove: Duxbury. pp. 240–245. ISBN 0-534-24312-6.
  • Grimmett, G.; Stirzaker, D. (2001). Probability and Random Processes (3rd ed.). Oxford.
  • Hayashi, Fumio (2000). Econometrics. Princeton University Press. pp. 92–93. ISBN 0-691-01018-8.
This page was last edited on 26 November 2023, at 16:44
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.