This is a list of slow rotators—minor planets that have an exceptionally long rotation period. This period, typically given in hours, and sometimes called rotation rate or spin rate, is a fundamental standard physical property for minor planets. In recent years, the periods of many thousands of bodies have been obtained from photometric and, to a lesser extent, radiometric observations.
The periods given in this list are sourced from the Light Curve Data Base (LCDB),^{[2]} which contains lightcurve data for more than 15,000 bodies. Most minor planets have rotation periods between 2 and 20 hours.^{[1]}^{[3]} As of 2019^{[update]}, a group of approximately 650 bodies, typically measuring 1–20 kilometers in diameter, have periods of more than 100 hours or 4^{1}⁄_{6} days. Among the § Slowest rotators, there are currently 15 bodies with a period longer than 1000 hours.^{[1]} According to the Minor Planet Center, the sharp lower limit of approximately 2.2 hours is due to the fact that most smaller bodies are thought to be rubble piles – conglomerations of smaller pieces, loosely coalesced under the influence of gravity – that fly apart if the period is shorter than this limit. The few minor planets rotating faster than 2.2 hours, therefore, can not be merely held together by selfgravity, but must be formed of a contiguous solid.^{[3]}
§ Potentially slow rotators have only an inaccurate period, estimated based on a fragmentary lightcurve and inconclusive measurement. They are listed separately from the more precise periods, which have a LCDB quality code, U, of 2 or 3 (unambiguous result). The periods for potentially slow rotators may be completely wrong (U = 1), have no complete and conclusive result (U = n.a.), or large error margins of more than 30% (U = 2−). A trailing plus sign (+) or minus sign (–) indicate slightly better or worse quality, respectively, than the unsigned value.^{[4]}
As with orbital periods, a rotational period can be sidereal or synodic to describe a full rotation with respect to the fixed stars (sidereal) and Sun (synodic), respectively. In most cases, the periods given in this list are synodic, not sidereal.^{[5]}^{[6]} However, in most cases the difference between these two different measures is not significant.^{[6]} This is the case for all mainbelt asteroids, which account for 97.5% of all minor planets.
YouTube Encyclopedic

1/2Views:65 4561 116

✪ Lec 19: Rotating Rigid Bodies, Inertia, and Axis Theorems  8.01 Classical Mechanics (Walter Lewin)

✪ 5.3 Pulsars [Astronomy: State of the Art]
Transcription
We have here, going back to rotating objects... I have an object here that has a certain velocity v, and it's going around with angular velocity omega, and a little later the angle has increased by an amount theta and then the velocity is here. We may now do something we haven't done before. We could give this object in this circle an acceleration. So we don't have to keep the speed constant. Now, v equals omega R, so that equals theta dot times R. And I can take now the first derivative of this. Then I get a tangential acceleration, which would be omega dot times R, which is theta double dot times R, and we call theta double dot... we call this alpha, and alpha is the angular acceleration which is in radians per second squared. Do not confuse ever the tangential acceleration, which is along the circumference, with a centripetal acceleration. The two are both there, of course. This is the one that makes the speed change along the circumference. If we compare our knowledge of the past of linear motion and we want to transfer it now to circular motion, then you can use all your equations from the past if you convert x to theta, v to omega and a to alpha. And the wellknown equations that I'm sure you remember can then all be used. For instance, the equation x equals x zero plus v zero t plus onehalf at squared simply becomes for circular motion theta equals theta zero plus omega zero t plus onehalf alpha t squared it's that simple. Omega zero is then the angular velocity at time t equals zero, and theta zero is the angle at time t equals zero relative to some reference point. And the velocity was v zero plus at. That now becomes that the velocity goes to angular velocity omega equals omega zero plus alpha t. So there's really not much added in terms of remembering equations. If I have a rotating disk, I can ask myself the question now which we have never done before, what kind of kinetic energy, how much kinetic energy is there in a rotating disk? We only dealt with linear motions, with onehalf mv squared, but we never considered rotating objects and the energy that they contain. So let's work on that a little. I have here a disk, and the center of the disk is C, and this disk is rotating with angular velocity omega that could change in time, and the disk has a mass m, and the disk has a radius R. And I want to know at this moment how much kinetic energy of rotation is stored in that disk. I take a little mass element here, m of i, and this radius equals r of i and the kinetic energy of that element i alone equals onehalf m of i times v of i squared, and v of i is this velocity this angle is 90 degrees. This is v of i. Now, v equals omega R. That always holds for these rotating objects. And so I prefer to write this as onehalf m of i omega squared r of i squared. The nice thing about writing it this way is that omega, the angular velocity, is the same for all points of the disk, whereas the velocity is not because the velocity of a point very close to the center is very low. The velocity here is very high, and so by going to omega, we don't have that problem anymore. So, what is now the kinetic energy of rotation of the disk, the entire disk? So we have to make a summation, and so that is omega squared over two times the sum of m of i r i squared over all these elements mi which each have their individual radii, r of i. And this, now, is what we call the moment of inertia, I. Don't confuse that with impulse; it has nothing to do with impulse. And this is moment of inertia... So the moment of inertia is the sum of mi ri squared. In... So this can also be written as onehalf I, I put a C there you will see shortly why, because the moment of inertia depends upon which axis of rotation I choose times omega squared. And when you see that equation you say, "Hey, that looks quite similar to onehalf mv squared." And so I add to this list now. If you go from linear motions to rotational motions, you should change the mass in your linear motion to the moment of inertia in your rotational motion, and then you get back to your onehalf mv squared. You can see that. So we now have a way of calculating the kinetic energy of rotation provided that we know how to calculate the moment of inertia. Well, the moment of inertia is a boring job. It's no physics, it's pure math, and I'm not going to do that for you. It's some integral, and if the object is nicely symmetric, in general you can do that. In this case, for the disk which is rotating about an axis through the center and the axis that's important is perpendicular to the disk that's essential in that case the moment of inertia equals onehalf m times R squared. And I don't even want you to remember this. There are tables in books, and you look these things up. I don't remember that. I may remember it for one day, but then, obviously, you forget that very quickly again. Needless to say, that the moment of inertia depends on what kind of object you have. Whether you have a disk or whether you have a sphere or whether you have a rod makes all the difference. And what also makes the difference about which axis you rotate the object. If we had a sphere, a solid sphere, then... So here you have a solid sphere, and I rotate it about an axis through its center. Then the moment of inertia, I happen to remember, equals twofifths mR squared if R is the radius and m is the mass of the sphere. My research is in astrophysics. I deal with stars, and stars have rotational kinetic energy. We'll get back to that in a minute not in a minute but today and this is the one moment of inertia that I do remember. If you have a rod, and you let this rod rotate about an axis through the center, and this axis is perpendicular to the rod the latter is important, perpendicular to the rod and it is length l and it has mass m, then the moment of inertia which I looked up this morning; I would never remember that equals 1/12 ml squared. And all these moments of inertia you can find in tables in your book on page 309. So the moment of inertia for rotation about this axis of a solid disk is onehalf mR squared. But it's completely different, the moment of inertia, if you rotated it about this axis. So you take the plane of the disk. Instead of rotating it this way, you rotate it now this way. You get a totally different moment of inertia. And most of those you can find in tables, but not all of them. Tables only go so far, and that is why I want to discuss with you two theorems which will help you to find moments of inertia in most cases. Suppose we have a rotating disk, and I will make you see the disk now with depth. So this is a disk, and we just discussed the rotation about the center of mass. And I call this axis l. And so it was rotating like this and was perpendicular to the disk. This is the moment of inertia. But now I'm going to drill a hole here, and I have here an axis l prime which is parallel to that one. And I'm going to force this object to rotate about that axis. I can always do that I can drill a hole have an axle, nicely frictionless bearing and I can force it to rotate about that. What now is the moment of inertia? If I know the moment of inertia, then I know how much rotational kinetic energy there is. That's onehalf I omega squared. And now there is a theorem which I will not prove, but it's very easy to prove, and that is called the parallel axis theorem. And that says that the moment of inertia of rotation about l prime provided that l prime is parallel to l is the moment of inertia when the object rotates about an axis l through the center of mass plus the mass of the disk times the distance d squared. So this is the mass. And that's a very easy thing to apply, and that allows you now in many cases, to find the moment of inertia in situations which are not very symmetric. Imagine that you had to do this mathematically, that you actually had to do an integration of all these elements mi from this point on. That would be a complete headache. In fact, I wouldn't even know how to do that. So it's great. Once you have demonstrated, once you have proven that this parallel axis theorem works, then, of course, you can always use it to your advantage. Notice that the moment of inertia for rotation about this axis which is not through a center of mass is always larger than the one through the center. You see, you have this md squared; it's always larger. There is a second theorem which sometimes comes in handy, and that only works when you deal with very thin objects, and that is called the perpendicular axis theorem. If you have some kind of a crazy object which of course we will never give you; we'll always give you a square or we'll give you a disk... But it has to be a thin plate. Otherwise the perpendicular axis theorem doesn't work. And suppose I'm rotating it about an axis perpendicular to the blackboard through that point. I call that the z axis. It's sticking out to you. That's the positive z axis. I can draw now any xy axis where I please, at 90degree angles, anywhere in the plane of the blackboard. So I pick one here, I call this x, and I pick one here and I call that y. So z is pointing towards you. Remember, I always choose a positive righthanded coordinate system. My x cross y is always in the direction of z. I always do that. And so you see that here, x cross y equals z. Now, you can rotate this thin plate about this axis. You can also rotate it about that axis. And you can also rotate it about the z axis. And then the perpendicular axis theorem, which your book proves in just a few lines, tells you that the moment of inertia for rotation about this axis here is the same as the moment of inertia for rotation about x plus the moment of inertia for rotation about the axis y. And this allows you to sometimes... in combination with the parallel axis theorem to find moments of inertia in case that you have thin plates which rotate about axes perpendicular to the plate or sometimes not even perpendicular. Sometimes you can use... if you know this and you know this, then you can find that. So both are useful, and in assignment 7 I'll give you a simple problem so that you can apply the perpendicular axis theorem. There are applications where energy is temporarily stored in a rotating disk, and we call those disks flywheels. And the rotational kinetic energy can be consumed, then, at a later time, so it's very economical. And this rotational kinetic energy can then be, perhaps, converted into electricity or in other forms of energy. And there are really remarkably inventive and intriguing ideas on how this can be done. Of course, whether it is practical depends always on dollars and cents and to what extent it is economically feasible. But I have always, even when I was a small boy... I remember when I was seven years, it already occurred to me that all this heat that is produced when cars slam their brakes all you're doing is you produce heat; you lose all that kinetic energy of your linear motion whether somehow that couldn't be used in a more effective way. And this is what I want to discuss with you now and see where we stand. This is actually being taken seriously by the Department of Energy. So I want to work out with you an example of a car which is in the mountains and which is going to go downhill. And the mountains are very dangerous zigzag roads and so he or she can only go very slowly. And the maximum speed that the person could use is at most ten miles per hour without killing him or herself which is about four meters per second. And so here is your car, and let's assume you start out with zero speed. And let's assume that the mass of the car we'll give it nice numbers is just 1,000 kilograms. And so you zigzag down this road. Let us assume that the height difference h let's give it a number, 500 meters... And you arrive here at point p. And you later have to go back up again. What is your kinetic energy when you reach point p? Well, you have a speed of four meters per second, and as you went down, you've been braking all the time. One way or another, you got rid of your speed and that's all burned up heat, you heat up the universe. So when you reach point p, your kinetic energy at that point p is simply onehalf mv squared. m is the mass of the car, so that is 500 times 16 v squared so that is 8,000 joules. Now compare this with the work that gravity did in bringing this car down. That work is mgh, and mgh is a staggering number. 1,000 times ten times 500 that is five million joules! And all of that was converted to heat using the brakes. It actually even gives you also wear and tear on the brakes. So who needs it? Is there perhaps a way that you can salvage it or maybe not all of it, maybe part of it? And the answer is yes, there are ways. At least in principle there are ways. You can install a disk in your car, which I would call, then, a flywheel, And you can convert the gravitational potential energy. You can convert that to kinetic energy of rotation in your flywheel. And to show you that it is not completely absurd, I will put, actually, in some numbers. Suppose you had a disk in your car which had a radius of half a meter. That's not completely absurd. That's not beyond my imagination. That's a sizable disk. And I give it a modest mass so that the mass of the car is not going to be too high 200 kilograms. That's reasonable. That would be a steel plate only five centimeters thick, so that's quite reasonable. And the moment of inertia of this disk if I rotate it about an axis through the center perpendicular to the disk that moment of inertia, we know now, is onehalf m... oh, we have a capital M R squared, and that equals 25. The units are kilograms, if you're interested, kilograms/meter squared. So we know the moment of inertia. Now, what we would like to do is we would like to convert all this gravitational potential energy into kinetic energy of that disk. If you think of a clever way that you can couple that people have succeeded in that then you really would like onehalf I omega squared... You would really like that to be five times ten to the six joules. And so that immediately tells you what omega should be for that disk, and you find, then, if you put in your numbers, which is trivial... you find that omega is about 632 radians per second, so the frequency of the disk is 100 hertz, 100 revolutions per second. I don't think that that is particularly extravagant. So as you would come down the hill, you would not be braking by pushing on your brake, you would not be heating up your brakes, but you would somehow convert this energy into the rotating disk and that would slow you down. So the slowdown, the "braking" is now done because of a conversion from your linear speed which comes from gravitational potential energy to the rotation of the disk. And when you need that energy, you tap it. So you should also be able to get the rotational kinetic energy out and convert that again into forward motion. And if you could really do this, then you could go back uphill and you wouldn't have to use any fuel. All your five million joules can be consumed, then, in an ideal case, and you would not have to use any fuel. Now, you can ask yourself the question, is this system only useful in the mountains or could you also use this in a city? Well, of course you can use it in a city. You wouldn't be braking like this, then, but again, you would slow down by taking out kinetic energy of linear forward motion, dump that into kinetic energy of rotation of your flywheel and that would slow you down. And when the traffic light turns green, you convert it back rotational kinetic energy into linear kinetic energy and you keep going again. Now, of course, this is all easier said than done, but it is not complete fantasy. People have actually made some interesting studies, and I would like to show you at least one case that I am aware of, that I found on the Web, that shows you that United States Energy Department is taking this quite seriously. This view graph is also on the 801 home page. And so you see here the idea of mounting such a flywheel under the car here. And it has the location of the "flywheel energy management power plant." Wonderful word, isn't it? And here you see a closeup of this flywheel. I didn't get any numbers on it. I don't know which fraction of the energy can be stored in your flywheel, but it's an attempt. People are seriously thinking about it. And it may happen in the next decade that cars may come on the market whereby some of your energy, at least, can be salvaged. Instead of heating up the universe, use it yourself, which could be very economical. I have here a toy car I'll show it on TV first. And this toy car has a flywheel. Do you see it? That the flywheel itself is the wheel of the car, but the idea is there. In this case, I cannot convert linear motion into the flywheel. I could do that, but I'm going to do it in a reverse way. I'm going to give this flywheel a lot of kinetic energy of rotation, and you will see shortly how I do that. And then I will show you that that can be converted back into forward motion in this case, it's very easy because the flywheel itself is the wheel. So let me try to... power this car. I do that with this plastic... okay. So I'm going to put some energy into this wheel, into this flywheel, and then we'll see whether the car can use that to start moving. Great that my lecture notes were there. So, you see, it works. And, of course, if you could reverse that idea, that when the car... before it stops, get it back into the flywheel, then you have the idea that I was trying to get across. Very economical, and definitely that will happen sometime in the future. Flywheels are used more often than you may think. MIT, at the Magnet Lab, has two flywheels which are amazing. They have a radius, I think, of 2.4 meters that is correct and each one of those flywheels has a stunning mass of 85 tons, 85,000 kilograms... and they rotate at about six hertz. You can calculate the moment of inertia. They rotate about their center axis perpendicular to the plane. You know now what onehalf I omega square is, and so you can calculate the kinetic energy of rotation. And that kinetic energy of rotation is, then, a whopping 200 million joules in each of those rotating flywheels. Now, they use this rotational kinetic energy to create very strong magnetic fields on a time scale as short as five seconds. So they convert mechanical energy of rotation to magnetic energy, which is not part of 801 so I will not go into how they do that. This is part of 802, and I'm sure all of you are looking forward to 802, and that's when you will see how you can convert mechanical energy into magnetic energy. We have already seen a demonstration in class whereby we converted mechanical energy when someone was rotating, into electric energy. I think that was you, wasn't it? And we got these light bulbs on. Well, you can also convert it into magnetic energy. And then when they have created these strong magnetic fields that they do their research with and when they want to get rid of them, they go the other way around and they dump that energy, that magnetic energy, back into the flywheels, who then start spinning again at six hertz. Needless to say that huge amount of rotational kinetic energy must be stored in planets and in stars, and I would like to spend quite some time on that. It's a very interesting subject. I will first discuss with you the sun and the earth and see how much rotational kinetic energy is stored in the earth and in the sun. This is also on the 801 home page, so don't copy this. Let's first look at the sun. We have the mass of the sun, we have the radius of the sun so you can calculate the moment of inertia of the sun. I have used my twofifths mR squared, which is really a crude approximation, because the twofifths m R squared for a solid sphere only holds if the mass is uniformly distributed throughout that sphere. With a star, that's not the case; not with the earth either, because the density is higher at the center. But this sort of gives you a crude idea. So we have there the moment of inertia, which is easy to calculate with that twofifths mR squared, and I get the same for the earth. This is the radius of the earth, and you see the moment of inertia of the earth. Now I want to know how much kinetic energy of rotation these objects have. Well, the sun rotates about its axis in 26 days, the earth in one day, and so I finally convert everything to MKS units and I find these numbers for the rotational kinetic energy. Now, look at the number of the sun 1½ times ten to the 36th joules. Our greatgrandfathers must have been puzzled about where the solar energy came from the heat and the light, where it came from. And conceivably it came from rotation. Maybe the sun is spinning down, is slowing down and maybe the energy that we get is nothing but rotational kinetic energy. If that were the case, however, since the sun produces four times ten to the 26th watts four times ten to the 26th joules per second, it would only last 125 years. So you can completely forget the idea that the energy from the sun that we now know, of course, is nuclear, but our greatgrandparents didn't know that that the energy would be tapped from kinetic energy of rotation. Let's look at the earth. 2½ times ten to the 29th joules. Well, let me try something... some fantasy on you, some crazy, some ridiculous idea and I'm telling you first, it is ridiculous. Remember that the world consumption... Six billion people on earth consume about four times ten to the 20th joules every year. So if somehow... I thought if you could tap the rotational energy of the earth by slowing the earth down, maybe we could use it to satisfy the world energy consumption. Um, I wouldn't know how to do it, and it is, of course, complete fantasy. All you would have to do is slow the earth down by about... 2.4 seconds. After one year... So you slow it down. After one year, the day wouldn't last... Day and night wouldn't last 24 hours but only 2.4 seconds longer. But, of course, after a billion years, then, you would have consumed up all the rotational kinetic energy and then the earth would no longer be rotating. It is, of course, a crazy idea but sometimes it's cute to speculate about crazy ideas. There is an object which we call the Crab Pulsar. It is a neutron star and it is located in the Crab Nebula. The Crab Nebula is the result of a supernova explosion that went off in the year 1054, and during my next lecture I will talk a lot more about that. For now, I just want to concentrate on this neutron star alone. And so here you have the data on the Crab Pulsar. The mass of the Crab Pulsar is not too different from that of the sun. It's about 1½ times more. The radius is ridiculously small it's only ten kilometers. All that mass is compact in a tenkilometerradius sphere. It has ahorrendous density of ten to the 14th grams per cubic centimeter. So, of course, the moment of inertia is extremely modest compared to the sun, because the radius is so small and the moment of inertia goes with the radius squared. However, if you look at rotational kinetic energy, the situation is very different, because this neutron star rotates in 33 milliseconds about its axis. So it has a phenomenal angular velocity. And so if now you calculate onehalf I omega squared, you get a fantastic amount of rotational kinetic energy. You get an amount which is more than a million times more than you have in the sun. And this object, this pulsar in the Crab Nebula is radiating copious amounts of xrays, of gamma rays. There are jets coming out of ionized gas, and we are certain that all that energy that this object is producing comes from rotational kinetic energy. And I will give you convincing arguments why there is no doubt about that. If you take the Crab Pulsar and you calculate how much energy comes out in xrays and gamma rays and everything that you can observe in astronomy, then you find that it has a power roughly of about six times ten to the 31st watts. It's a phenomenal amount if you compare that with the sun, by the way. The sun is only four times ten to the 26th watts. So the Crab Pulsar alone generates about 150,000 times more power than the sun. We know the period of the pulsar to a very high degree of accuracy. The period of rotation of the neutron star is 0.0335028583 seconds. That's what it is today. I called my radio astronomy friends yesterday and I asked them, "What is the rotation period of the neutron star in the Crab Nebula?" and this was the answer. Tomorrow, however, it is longer by 36.4 nanoseconds. So tomorrow, you have to add this. That means it's slowing down. The Crab Pulsar is slowing down. That means omega is going down. That means onehalf I omega square is going down. And when you do your homework, which you should be able to do to compare the rotational kinetic energy today with the rotational kinetic energy tomorrow you will see that the loss of energy is six times ten to the 31st joules per second, which is exactly the power that we record in terms of xrays, gamma rays and other forms of energy. So there's no question that in the case of this rotating neutron star, all the energy that it radiates is at the expense of rotational kinetic energy. It's a mindboggling concept when you think of it. And if the neutron star in the Crab Nebula were to continue to lose rotational kinetic energy at exactly this rate, then it would come to a halt in about 1,000 years. Now I would like to show you a few slides, and I might as well cover this up so that we get it very dark in this room. I want to show you the Crab Nebula, and I think I will also show you the beautiful flywheels in the Magnet Lab. Now I need a flashlight. I need my laser pointer. I need a lot of stuff. Okay, there we go, so I'm going to make it dark. You ready for that? Okay, if I can get the first slide. What you see here are these flywheels at the Magnet Lab. These are the wheels that have a mass of 85 tons and that have a radius of 2.5 meters an incredible, ingenious device, and you can store in there 200 million joules, and you can dump it into magnetic energy and in five seconds dump it back into kinetic energy of rotation. It is an amazing accomplishment, by the way. And here you see the Crab Nebula. The Crab Nebula is at a distance from us of about 5,000 lightyears. It is the remnant of a supernova explosion in the year 1054 much more about that during my next lecture and what you see here is not stuff that is generated at this moment in time by the pulsar. This, by the way, is the pulsar, and the red filaments that you see here is material that was thrown off when the explosion occurred. The explosion, the supernova explosion throws the outer layers of the star with a huge speed some 10,000 kilometers per second into space, and that is what you are seeing. From here to here is about seven lightyears to give you an idea of the size of this object. This pulsar alone, however, generates the... six times 31... watts. And we do know that it is this star that is the pulsar and we know that it is not that star. And the way that that was observed, that that was measured, is as follows. A stroboscopic picture, a stroboscopic exposure was made of the center portion of the Crab Nebula. And a stroboscopic picture means that you are using a shutter which opens and closes. In this case, you have to open and close it with exactly the same frequency as the rotation of the neutron star. This neutron star for reasons that is not well understood is blinking at us. It blinks at us at exactly the frequency of its rotation, 33 milliseconds. That means 30 hertz. Roughly 30 times per second you see the star become bright and then go dim again. If now you set your frequency of your shutter of your... in front of your photographic plate at exactly that frequency and you expose the photographic plate only when the star is bright, then you will see a very bright star when you develop your picture. If now you take another picture, expose it the same amount of time, but the shutter is open when the star is dim and you develop that picture, the star is dim. But the beauty is that all other stars in the vicinity, of course, will show up on both photographic plates with exactly the same strength because they are not blinking at you, since they don't blink at us with a period of 33 milliseconds. That is what you will see on the next slide, which is a stroboscopic exposure. This star is clearly not the pulsar as it is about equally bright on both exposures. This is not the pulsar, but this one is. You see, this one is missing here. And so this is beyond any question that we know exactly which the pulsar is. A very new observatory was launched only recently, and that is called the Chandra Xray Observatory. And Chandra made a picture very recently of the Crab Nebula, of the pulsar, and that's what I want to show you now. It's on the Web, and I show you a picture that many of you probably haven't seen yet, which is the center part of the Crab Nebula, and the pulsar is located here. And all this is xrays, nothing to do with optical light. This is all xrays, and you see there is a huge nebula here around this pulsar which is about two lightyears across, and all that energy in xrays is all at the expense of rotational kinetic energy of the pulsar, which is quite amazing. And when this picture was made with Chandra Xray Observatory, they discovered immediately that the pulsar also produces a jet. Maybe you can see that from where you are sitting. There is a jet coming out here, and with a little bit of imagination you can see this jet going out there. All that energy is at the expense of rotational kinetic energy. MIT has a big stake, by the way, in the Chandra Observatory, and not only MIT but Cambridge as a whole. The Center for Astrophysics and MIT are running the Chandra Science Center, from which all radio commands are given, which is here just across the street, a few blocks away. And many MIT scientists have dedicated the major part of their careers in this endeavor. And these are one of the wonderful results that have come out. All right, you now have five minutes left. You have a little more you have seven minutes left. I would appreciate it a lot if you fill out the questionnaire, because that's the only way we can get your feedback and we can make changes if you think these changes are necessary. So, see you Friday.
Contents
Slowest rotators
This list contains the slowestrotating minor planets with periods of at least 1000 hours, or 41^{2}⁄_{3} days. See § Potentially slow rotators for minor planets with an insufficiently accurate period—that is, a LCDB quality code of less than 2.
#  Minor planet designation  Rotation period (hours) 
Δmag  Quality (U) 
Orbit or family  Spectral type  Diameter (km) 
Abs. mag (H) 
Refs 

1.  (162058) 1997 AE12  1880  0.60  2  NEO  S  0.78  17.90  LCDB · List 
2.  846 Lipperta  1641  0.30  2  Themis  CBU:  52.41  10.26  LCDB · List 
3.  2440 Educatio  1561  0.80  2  Flora  S  6.51  13.10  LCDB · List 
4.  2056 Nancy  1343  0.68  3−  MBA (inner)  S  10.30  12.30  LCDB · List 
5.  912 Maritima  1332  0.18  3−  MBA (outer)  C  82.14  9.30  LCDB · List 
6.  9165 Raup  1320  1.34  3−  Hungaria  S  4.62  13.60  LCDB · List 
7.  1235 Schorria  1265  1.40  3  Hungaria  CX:  5.04  13.10  LCDB · List 
8.  (50719) 2000 EG140  1256  0.42  2  Eunomia  S  3.40  14.65  LCDB · List 
9.  (75482) 1999 XC173  1234.2  0.69  2  Vestian  S  2.96  15.01  LCDB · List 
10.  288 Glauke  1170  0.90  3  MBA (outer)  S  32.24  10.00  LCDB · List 
11.  (39546) 1992 DT5  1167.4  0.80  2  MBA (outer)  C  5.34  15.09  LCDB · List 
12.  496 Gryphia  1072  1.25  3  Flora  S  15.47  11.61  LCDB · List 
13.  4524 Barklajdetolli  1069  1.26  2  Flora  S  7.13  12.90  LCDB · List 
14.  2675 Tolkien  1060  0.75  2+  Flora  S  9.85  12.20  LCDB · List 
15.  (219774) 2001 YY145  1007.7  0.86  2  MBA (inner)  S  1.54  16.43  LCDB · List 
Periods between 500 and 1000 hours
#  Minor planet designation  Rotation period (hours) 
Δmag  Quality (U) 
Orbit or family  Spectral type  Diameter (km) 
Abs. mag (H) 
Refs 

16.  (38063) 1999 FH  990  0.55  2  Mars crosser  S  3.92  14.40  LCDB · List 
17.  (86106) 1999 RP_{113}  975.1  0.74  2  Eos  S  4.44  14.51  LCDB · List 
18.  14436 Morishita  972.8  0.82  2  MBA (inner)  S  3.49  14.65  LCDB · List 
19.  (87231) 2000 OB_{43}  967.3  0.58  2  Eunomia  S  2.94  14.97  LCDB · List 
20.  (58651) 1997 WL_{42}  938.2  0.47  2  MBA (inner)  S  2.36  15.50  LCDB · List 
21.  9000 Hal  908  0.90  2+  Flora  S  4.11  14.10  LCDB · List 
22.  (42843) 1999 RV_{11}  894  1.32  2  Phocaea  S  3.49  14.50  LCDB · List 
23.  3233 Krisbarons  888  1.44  2  Flora  S  6.51  13.10  LCDB · List 
24.  (37586) 1991 BP_{2}  887  0.96  2+  Phocaea  S  5.53  13.50  LCDB · List 
25.  831 Stateira  861  0.64  3−  Flora  S  6.81  13.00  LCDB · List 
26.  2974 Holden  856  0.70  2+  Flora  S  6.21  13.20  LCDB · List 
27.  (391033) 2005 TR_{15}  850  1.00  2  NEO  S  0.45  19.10  LCDB · List 
28.  (29733) 1999 BA_{4}  849.2  0.74  2  Vestian  S  3.88  14.42  LCDB · List 
29.  2672 Písek  831  0.90  2+  Eunomia  S  9.60  12.40  LCDB · List 
30.  12867 Joeloic  813  0.71  2+  Flora  S  4.94  13.70  LCDB · List 
31.  2862 Vavilov  800  0.40  2  Flora  S  7.82  12.70  LCDB · List 
32.  (22166) 2000 WX_{154}  800  0.46  2  MBA (inner)  S  4.61  15.02  LCDB · List 
33.  8109 Danielwilliam  790  0.60  2  Phocaea  S  3.17  14.71  LCDB · List 
34.  (47069) 1998 XC_{73}  784.5  0.38  2  MBA (outer)  C  10.06  13.72  LCDB · List 
35.  1663 van den Bos  740  0.80  3−  Flora  S  12.25  11.90  LCDB · List 
36.  4902 Thessandrus  738  0.60  2  Jupiter trojan  C  61.04  9.80  LCDB · List 
37.  (8615) 1979 MB2  731.3  1.16  2  MBA (inner)  S  4.45  14.12  LCDB · List 
38.  35286 Takaoakihiro  724.1  0.93  2  Eunomia  S  3.22  14.77  LCDB · List 
39.  (16896) 1998 DS9  708  0.43  3−  Phocaea  S  6.06  13.30  LCDB · List 
40.  (49671) 1999 RP_{46}  700.1  0.68  2  Eos  S  7.14  13.48  LCDB · List 
41.  (249838) 2001 OR_{104}  670.8  0.69  2  MBA (outer)  C  3.65  15.91  LCDB · List 
42.  1479 Inkeri  660  1.30  2+  MBA (middle)  XFU  17.52  11.90  LCDB · List 
43.  11774 Jerne  648.1  0.68  2  MBA (outer)  C  8.09  14.19  LCDB · List 
44.  (7352) 1994 CO  648  0.30  3−  Jupiter trojan  C  58.29  9.90  LCDB · List 
45.  1144 Oda  648  0.55  2+  Hilda  D  57.65  9.90  LCDB · List 
46.  (16276) 2000 JX_{61}  646.7  0.62  2  MBA (middle)  S  5.92  14.26  LCDB · List 
47.  (119744) 2001 YN_{42}  625  0.52  2+  MBA (inner)  S  2.47  15.40  LCDB · List 
48.  8054 Brentano  623.8  0.46  2  Flora  S  3.25  14.61  LCDB · List 
49.  (12982) 1979 MS_{5}  601.9  0.86  2  Vestian  S  2.39  15.47  LCDB · List 
50.  19640 Ethanroth  600.3  0.62  2  MBA (outer)  C  6.54  14.65  LCDB · List 
51.  (37635) 1993 UJ_{1}  600  0.80  3  Hungaria  E  2.20  14.90  LCDB · List 
52.  (10939) 1999 CJ_{19}  587.8  0.61  2  Flora  S  3.94  14.19  LCDB · List 
53.  (218144) 2002 RL_{66}  587  0.32  3−  Mars crosser  S  2.97  15.00  LCDB · List 
54.  (88242) 2001 CK_{35}  576  0.92  2  Hungaria  E  1.36  16.25  LCDB · List 
55.  3448 Narbut  570.4  0.39  2  Flora  S  5.69  13.39  LCDB · List 
56.  (23958) 1998 VD30  562  0.45  2  Jupiter trojan  C  50.77  10.20  LCDB · List 
57.  27810 Daveturner  546  0.43  2+  Hungaria  E  3.35  14.30  LCDB · List 
58.  1042 Amazone  540  0.25  2  MBA (outer)  C  73.59  9.90  LCDB · List 
59.  (121293) 1999 RL_{182}  539.6  0.52  2  MBA (outer)  C  4.04  15.70  LCDB · List 
60.  (230872) 2004 RG_{199}  535.1  0.66  2  MBA (outer)  C  2.73  16.55  LCDB · List 
61.  (48376) 4044 T3  535  1.31  2  Flora  S  2.73  14.99  LCDB · List 
62.  23804 Haber  532.2  0.63  2  Vestian  S  2.68  15.22  LCDB · List 
63.  (96590) 1998 XB  520  1.00  3  NEO  S  1.71  16.20  LCDB · List 
64.  (283401) 2000 SV_{15}  502  0.37  2  Jupiter trojan  C  13.88  13.02  LCDB · List 
65.  (9335) 1991 AA_{1}  500.6  0.88  2  MBA (outer)  C  11.33  13.46  LCDB · List 
66.  6498 Ko  500  0.60  2  Flora  S  3.99  14.16  LCDB · List 
67.  (90403) 2003 YE_{45}  500  0.81  2  NEO  S  0.90  17.60  LCDB · List 
Periods of 400+ hours
#  Minor planet designation  Rotation period (hours) 
Δmag  Quality (U) 
Orbit or family  Spectral type  Diameter (km) 
Abs. mag (H) 
Refs 

68.  (279208) 2009 UQ_{35}  499.6  0.46  2  MBA (inner)  S  1.01  17.33  LCDB · List 
69.  79316 Huangshan  493  0.62  2+  Hungaria  E  2.54  14.90  LCDB · List 
70.  1220 Crocus  491.4  1.00  3  Eos  S  15.79  11.76  LCDB · List 
71.  1256 Normannia  488.1  0.39  2  Hilda  D  69.02  10.02  LCDB · List 
72.  (6840) 1995 WW5  482.3  0.46  2  Nysa  S  3.12  14.84  LCDB · List 
73.  2696 Magion  480  0.31  2  Phocaea  S  10.06  12.20  LCDB · List 
74.  5171 Augustesen  480  0.80  3  Vestian  S  6.50  13.30  LCDB · List 
75.  19204 Joshuatree  480  0.95  2+  Phocaea  S  4.39  14.00  LCDB · List 
76.  20862 Jenngoedhart  479.3  1.08  2  Flora  S  3.59  14.39  LCDB · List 
77.  2759 Idomeneus  479  0.27  3−  Jupiter trojan  C  60.90  10.00  LCDB · List 
78.  (215442) 2002 MQ_{3}  473  0.38  3  NEO  S  0.59  18.50  LCDB · List 
79.  (23123) 2000 AU_{57}  467.3  0.57  2  Jupiter trojan  C  23.00  11.92  LCDB · List 
80.  (327749) 2006 TA_{69}  463.7  0.83  2  Flora  S  0.86  17.50  LCDB · List 
81.  6141 Durda  460  0.50  2+  Hungaria  E  3.35  14.30  LCDB · List 
82.  6183 Viscome  453  0.90  3−  Mars crosser  S  5.41  13.70  LCDB · List 
83.  2013 US_{3}  450  1.20  2  NEO  S  0.16  21.30  LCDB · MPC 
84.  (93955) 2000 WT_{183}  449.5  0.62  2  MBA (outer)  C  5.80  14.91  LCDB · List 
85.  (66092) 1998 SD  448  0.42  2  Hungaria  E  3.06  14.50  LCDB · List 
86.  (98055) 2000 RR_{38}  447.6  0.40  2  MBA (inner)  S  2.36  15.50  LCDB · List 
87.  (36103) 1999 RL_{116}  446.5  0.39  2  MBA (outer)  C  7.58  14.33  LCDB · List 
88.  11351 Leucus  445.7  0.70  3−  Jupiter trojan  C  42.07  10.70  LCDB · List 
89.  2747 Český Krumlov  438.7  0.63  2  MBA (outer)  C  20.62  12.16  LCDB · List 
90.  (213480) 2002 EV_{148}  436.7  0.32  2  MBA (inner)  S  1.17  17.02  LCDB · List 
91.  437 Rhodia  433.2  0.35  3−  MBA (inner)  S  14.46  10.71  LCDB · List 
92.  319 Leona  430  0.50  3  MBA (outer)  C  68.01  10.10  LCDB · List 
93.  (383702) 2007 TK_{436}  427.4  0.60  2  MBA (outer)  C  3.85  15.80  LCDB · List 
94.  (122463) 2000 QP_{148}  426  1.13  2  Mars crosser  S  2.59  15.30  LCDB · List 
95.  (463380) 2013 BY_{45}  425  0.49  2  NEO  S  0.45  19.10  LCDB · List 
96.  3571 Milanstefanik  421.1  0.65  2+  Hilda  C  38.91  11.00  LCDB · List 
97.  (27867) 1995 KF_{4}  418.9  0.37  2  Eunomia  S  5.25  13.71  LCDB · List 
98.  5641 McCleese  418  1.30  2  Hungaria  A  3.67  14.10  LCDB · List 
99.  253 Mathilde  417.7  0.50  3  MBA (middle)  C  57.87  10.30  LCDB · List 
100.  17030 Sierks  416.2  0.31  2  MBA (outer)  C  10.57  13.61  LCDB · List 
101.  707 Steina  414  1.00  2+  Flora  S  10.31  12.10  LCDB · List 
102.  (87134) 2000 NS_{5}  412.7  0.84  2  MBA (middle)  S  3.61  15.33  LCDB · List 
103.  9584 Louchheim  410  0.30  2  MBA (inner)  S  4.50  14.10  LCDB · List 
104.  3759 Piironen  409.8  0.56  2  Eunomia  C  32.15  11.90  LCDB · List 
105.  (221540) 2006 TG_{128}  408.9  0.83  2  Nysa  S  1.20  16.92  LCDB · List 
106.  10684 Babkina  404.7  0.74  2  Flora  S  2.43  15.24  LCDB · List 
Periods of 300+ hours
#  Minor planet designation  Rotation period (hours) 
Δmag  Quality (U) 
Orbit or family  Spectral type  Diameter (km) 
Abs. mag (H) 
Refs 

107.  (223665) 2004 PH_{37}  397.2  0.58  2  Eunomia  S  1.59  16.30  LCDB · List 
108.  21432 Polingloh  393  0.73  2  Flora  S  1.52  16.25  LCDB · List 
109.  (76800) 2000 OQ_{35}  392  1.40  3  Hungaria  E  2.54  14.90  LCDB · List 
110.  22905 Liciniotoso  389.6  0.42  2  Flora  S  2.50  15.18  LCDB · List 
111.  (172537) 2003 UH_{27}  386.9  0.62  2  Flora  S  0.98  17.20  LCDB · List 
112.  (108163) 2001 HA_{6}  383.5  0.71  2  Eunomia  S  3.01  14.92  LCDB · List 
113.  (192309) 1993 TK_{26}  383.3  0.80  2  MBA (outer)  C  3.38  16.08  LCDB · List 
114.  (31182) 1997 YZ3  380  0.90  2  Hungaria  E  2.30  14.80  LCDB · List 
115.  10331 Peterbluhm  379  1.10  2  Hilda  C  23.21  11.90  LCDB · List 
116.  (252079) 2000 SY_{306}  376  0.74  2  Flora  S  0.94  17.31  LCDB · List 
117.  (184616) 2005 RE_{11}  375.4  0.86  2  Eos  S  2.88  15.46  LCDB · List 
118.  (13331) 1998 SU_{52}  375  0.80  3−  Jupiter trojan  C  29.21  11.40  LCDB · List 
119.  (15529) 2000 AA_{80}  375  0.59  2  Jupiter trojan  C  29.21  11.40  LCDB · List 
120.  1750 Eckert  375  0.87  3−  Hungaria  S  6.97  13.15  LCDB · List 
121.  (18058) 1999 XY_{129}  374.8  0.58  2  Jupiter trojan  C  18.30  12.42  LCDB · List 
122.  5075 Goryachev  373  1.00  2  Nysa  S  5.28  13.70  LCDB · List 
123.  8026 Johnmckay  372  1.00  3  Hungaria  E  2.54  14.90  LCDB · List 
124.  (106723) 2000 WE_{179}  368.5  0.74  2  MBA (outer)  C  4.29  15.57  LCDB · List 
125.  5851 Inagawa  367.5  0.90  3  Eunomia  S  9.60  12.40  LCDB · List 
126.  (14920) 1994 PE_{33}  367.1  0.54  2  Flora  S  3.53  14.43  LCDB · List 
127.  (23615) 1996 FK12  367  0.23  2  Hungaria  E  2.92  14.60  LCDB · List 
128.  8485 Satoru  362.8  0.58  2  MBA (outer)  C  10.11  13.70  LCDB · List 
129.  (114541) 2003 BP_{25}  362.3  0.77  2  MBA (inner)  S  2.54  15.34  LCDB · List 
130.  (45752) 2000 JY_{70}  362  0.48  2  Eos  S  6.19  13.79  LCDB · List 
131.  (325929) 2010 VB_{17}  360.4  0.68  2  Flora  S  0.65  18.09  LCDB · List 
132.  (31399) 1998 YF_{30}  359.1  0.40  2  Eunomia  S  5.63  13.56  LCDB · List 
133.  (22056) 2000 AU_{31}  358  0.98  2+  Jupiter trojan  C  24.30  11.80  LCDB · List 
134.  (83374) 2001 SF_{9}  356.4  0.48  2  MBA (outer)  C  9.14  13.92  LCDB · List 
135.  4024 Ronan  356  1.10  3−  Flora  S  6.51  13.10  LCDB · List 
136.  (252461) 2001 TS_{233}  353.9  0.48  2  MBA (outer)  C  2.81  16.49  LCDB · List 
137.  10374 Etampes  353  0.23  2  Flora  S  4.09  14.11  LCDB · List 
138.  (123104) 2000 SV_{348}  351.9  0.42  2  MBA (middle)  S  3.42  15.44  LCDB · List 
139.  630 Euphemia  350  0.45  2  Eunomia  S  17.14  11.10  LCDB · List 
140.  (31076) 1996 XH_{1}  350  0.17  2  Hungaria  E  1.93  15.50  LCDB · List 
141.  (105654) 2000 SX_{26}  348.7  0.70  2  Jupiter trojan  C  11.67  13.39  LCDB · List 
142.  (26083) 1981 EJ_{11}  347  0.34  2+  Nysa  S  2.77  15.10  LCDB · List 
143.  (122733) 2000 SK_{47}  346.9  0.26  2  Jupiter trojan  C  14.56  12.91  LCDB · List 
144.  (9807) 1997 SJ_{4}  346  0.43  2  Jupiter trojan  C  30.59  11.30  LCDB · List 
145.  2487 Juhani  344.6  1.03  2  MBA (inner)  S  7.13  13.10  LCDB · List 
146.  (24471) 2000 SH_{313}  344.1  0.75  2  Jupiter trojan  C  27.20  11.56  LCDB · List 
147.  (43807) 1991 RC11  337.8  0.18  2  MBA (outer)  C  12.30  13.28  LCDB · List 
148.  4962 Vecherka  336  1.08  2  Eunomia  S  10.06  12.30  LCDB · List 
149.  7430 Kogure  335.9  0.57  2  MBA (inner)  S  7.82  12.90  LCDB · List 
150.  (28857) 2000 JE_{59}  335.5  0.54  2  Eunomia  S  3.37  14.67  LCDB · List 
151.  10551 Göteborg  335.3  0.70  2  Eos  S  11.53  12.44  LCDB · List 
152.  8942 Takagi  332.2  0.44  2  MBA (outer)  C  6.91  14.53  LCDB · List 
153.  (61750) 2000 QD_{157}  331.6  0.84  2  MBA (middle)  S  3.05  15.69  LCDB · List 
154.  (51888) 2001 QZ_{17}  331  0.39  2+  Hilda  C  13.98  13.00  LCDB · List 
155.  (213835) 2003 QZ_{110}  330.4  0.55  2  Flora  S  0.73  17.84  LCDB · List 
156.  12577 Samra  329.2  0.96  2  MBA (outer)  C  5.72  14.94  LCDB · List 
157.  (256357) 2006 XH_{57}  325.1  0.74  2  MBA (inner)  S  1.50  16.48  LCDB · List 
158.  (31177) 1997 XH11  323.4  0.49  2  Eunomia  S  4.43  14.08  LCDB · List 
159.  (332190) 2006 BR_{277}  321.6  0.91  2  MBA (outer)  C  2.31  16.91  LCDB · List 
160.  (16917) 1998 FB_{29}  321.5  0.69  2  Koronis  S  4.63  13.84  LCDB · List 
161.  3527 McCord  321  0.44  2  Flora  S  7.82  12.70  LCDB · List 
162.  (50647) 2000 EN_{88}  320  0.88  2  MBA (outer)  C  8.76  14.02  LCDB · List 
163.  341 California  318  0.92  3  Flora  S  14.67  10.55  LCDB · List 
164.  16879 Campai  314.2  0.68  2  MBA (outer)  C  10.61  13.60  LCDB · List 
165.  14040 Andrejka  310  0.95  2  Flora  S  2.26  15.40  LCDB · List 
166.  (26977) 1997 US_{3}  309.7  0.92  2  Eunomia  S  5.44  13.63  LCDB · List 
167.  (87892) 2000 SS_{292}  309.7  0.82  2  MBA (outer)  C  7.26  14.42  LCDB · List 
168.  (21805) 1999 TQ_{9}  309.3  0.40  2  Themis  C  7.38  14.02  LCDB · List 
169.  1807 Slovakia  308.6  1.10  3  MBA (inner)  S  9.84  12.40  LCDB · List 
170.  (84631) 2002 VW_{51}  308.1  0.54  2  MBA (inner)  S  2.22  15.63  LCDB · List 
171.  8807 Schenk  307.6  0.44  2  MBA (inner)  S  4.17  14.26  LCDB · List 
172.  (26876) 1994 CR_{14}  306.7  0.54  2  Eos  S  6.07  13.84  LCDB · List 
173.  (326366) 2000 WV_{21}  306.7  0.72  2  MBA (middle)  S  2.06  16.55  LCDB · List 
174.  79360 Sila–Nunam  300.2  0.15  2  TNO  C  330.77  5.52  LCDB · List 
Periods of 200+ hours
#  Minor planet designation  Rotation period (hours) 
Δmag  Quality (U) 
Orbit or family  Spectral type  Diameter (km) 
Abs. mag (H) 
Refs 

175.  21723 Yinyinwu  297.9  0.47  2  MBA (outer)  C  6.81  14.56  LCDB · List 
176.  (185492) 2007 HA_{8}  295.4  0.67  2  Jupiter trojan  C  13.60  13.06  LCDB · List 
177.  11780 Thunder Bay  295  0.70  3  MBA (inner)  S  7.13  13.10  LCDB · List 
178.  (183300) 2002 UH_{19}  294.8  0.64  2  MBA (inner)  S  1.09  17.17  LCDB · List 
179.  (239303) 2007 PB_{43}  292.1  0.92  2  MBA (outer)  C  4.03  15.70  LCDB · List 
180.  1506 Xosa  292  0.70  2+  MBA (inner)  S  11.83  12.00  LCDB · List 
181.  470 Kilia  290  0.26  2  Vestian  S  26.39  10.07  LCDB · List 
182.  2018 XV  290  0.28  2  NEO  S  0.24  20.44  LCDB · MPC 
183.  (17847) 1998 HQ_{115}  289.8  0.64  2  MBA (middle)  S  5.31  14.49  LCDB · List 
184.  (69026) 2002 VL_{93}  288.1  0.63  2  MBA (inner)  S  2.95  15.01  LCDB · List 
185.  (128648) 2004 RT_{42}  287.5  0.51  2  MBA (outer)  C  4.35  15.53  LCDB · List 
186.  4459 Nusamaibashi  287.5  0.66  2  Flora  S  3.91  14.21  LCDB · List 
187.  (14774) 4845 T1  287.4  0.50  2  MBA (outer)  C  11.05  13.51  LCDB · List 
188.  (98081) 2000 RF_{67}  287.3  0.84  2  MBA (inner)  S  3.41  14.70  LCDB · List 
189.  (34045) 2000 OD_{34}  287.3  0.23  2  MBA (inner)  S  3.44  14.68  LCDB · List 
190.  (163899) 2003 SD220  285  2.20  2+  NEO  S  1.08  17.20  LCDB · List 
191.  (225561) 2000 SB_{372}  281.6  0.55  2  MBA (middle)  S  2.00  16.61  LCDB · List 
192.  3635 Kreutz  280  0.25  2+  Hungaria  S  3.41  14.70  LCDB · List 
193.  (35697) 1999 CG_{104}  277.6  0.92  2  Flora  S  2.85  14.89  LCDB · List 
194.  (15658) 1265 T2  277.4  0.49  2  MBA (inner)  S  2.34  15.52  LCDB · List 
195.  (32539) 2001 PD_{59}  276.3  0.67  2  MBA (outer)  C  7.72  14.29  LCDB · List 
196.  4142 DersuUzala  276  0.60  2  Hungaria  S  7.13  13.10  LCDB · List 
197.  (7183) 1991 RE16  275.8  0.46  2  Eos  S  10.93  12.56  LCDB · List 
198.  (16843) 1997 XX_{3}  275  0.41  2  Hilda  C  21.16  12.10  LCDB · List 
199.  (67175) 2000 BA_{19}  275  0.25  2+  Hungaria  E  2.54  14.90  LCDB · List 
200.  (16819) 1997 VW  274.9  0.50  2  MBA (middle)  S  9.09  13.32  LCDB · List 
201.  10404 McCall  274.9  0.84  2  MBA (outer)  C  7.05  14.49  LCDB · List 
202.  2870 Haupt  274  0.60  3−  Erigone  C  14.64  12.90  LCDB · List 
203.  2554 Skiff  273  0.90  2  Flora  S  7.82  12.70  LCDB · List 
204.  299 Thora  272.9  0.50  3−  MBA (inner)  S  17.11  11.30  LCDB · List 
205.  20796 Philipmunoz  272.8  0.46  2  Koronis  S  3.36  14.53  LCDB · List 
206.  3945 Gerasimenko  272.3  0.68  2  MBA (outer)  C  14.80  12.88  LCDB · List 
207.  2576 Yesenin  272  0.34  2  MBA (outer)  C  25.86  11.66  LCDB · List 
208.  (24466) 2000 SC_{156}  271.9  0.63  2  MBA (outer)  C  9.15  13.92  LCDB · List 
209.  9323 Hirohisasato  269.2  0.53  2  Erigone  C  5.23  15.14  LCDB · List 
210.  (42195) 2001 DO_{17}  268.8  0.92  2  MBA (outer)  C  12.11  13.31  LCDB · List 
211.  (332019) 2005 NP_{122}  268.6  0.41  2  Hilda  C  4.95  15.26  LCDB · List 
212.  10476 Los Molinos  267.9  0.33  2  MBA (inner)  S  2.96  15.01  LCDB · List 
213.  (24357) 2000 AC_{115}  264  0.39  2+  Jupiter trojan  C  25.44  11.70  LCDB · List 
214.  2010 WG9  263.8  0.14  2  TNO  C  91.94  8.30  LCDB · MPC 
215.  (28552) 2000 EY_{38}  263.2  0.30  2  MBA (middle)  S  5.54  14.40  LCDB · List 
216.  (12808) 1996 AF_{1}  263.1  0.30  2  MBA (inner)  S  6.21  13.40  LCDB · List 
217.  (147560) 2004 FN_{25}  261.9  0.86  2  Eunomia  S  1.71  16.15  LCDB · List 
218.  (149106) 2002 CD_{206}  261.2  0.87  2  MBA (outer)  C  3.78  15.84  LCDB · List 
219.  (65223) 2002 EU_{34}  260  0.44  2+  Jupiter trojan  C  18.43  12.40  LCDB · List 
220.  (183581) 2003 SY_{84}  260  0.87  2  Mars crosser  S  2.97  15.00  LCDB · List 
221.  (29231) 1992 EG_{4}  259.5  0.85  2  MBA (outer)  C  6.11  14.80  LCDB · List 
222.  (226828) 2004 RR_{321}  259.2  0.90  2  MBA (outer)  C  3.76  15.85  LCDB · List 
223.  1447 Utra  257  0.63  2  MBA (inner)  S  13.58  11.70  LCDB · List 
224.  (161738) 2006 SD_{126}  256.4  0.61  2  MBA (inner)  S  1.96  15.90  LCDB · List 
225.  1573 Väisälä  252  0.76  2  Phocaea  S  9.77  12.30  LCDB · List 
226.  (119745) 2001 YU_{44}  251.3  0.30  2  MBA (inner)  S  2.44  15.43  LCDB · List 
227.  (51238) 2000 JT_{34}  250.6  0.42  2  MBA (outer)  C  9.59  13.82  LCDB · List 
228.  6169 Sashakrot  250.1  0.39  2  MBA (outer)  C  12.22  13.29  LCDB · List 
229.  824 Anastasia  250  1.20  3−  MBA (outer)  S  34.14  10.41  LCDB · List 
230.  6271 Farmer  250  0.22  2  Hungaria  E  4.62  13.60  LCDB · List 
231.  (24107) 1999 VS_{19}  249  0.31  2  MBA (outer)  C  9.37  13.87  LCDB · List 
232.  7509 Gamzatov  249  0.75  3−  Flora  S  5.17  13.60  LCDB · List 
233.  (39705) 1996 TO_{18}  247.2  0.39  2  Flora  S  2.14  15.52  LCDB · List 
234.  (128906) 2004 TR_{34}  247  0.58  2  Themis  C  3.33  15.75  LCDB · List 
235.  (258476) 2002 AN_{13}  247  0.75  2  MBA (outer)  C  2.10  17.12  LCDB · List 
236.  19034 Santorini  247  0.43  2  Hilda  C  14.64  12.90  LCDB · List 
237.  (41039) 1999 UX_{56}  246.8  0.82  2  MBA (outer)  C  4.36  15.53  LCDB · List 
238.  (13854) 1999 XX_{104}  246.7  0.79  2  MBA (inner)  S  2.19  15.66  LCDB · List 
239.  (144974) 2005 EH_{125}  246.7  0.73  2  Flora  S  0.91  17.38  LCDB · List 
240.  (83958) 2001 XA_{36}  246.1  0.87  2  MBA (outer)  C  5.03  15.22  LCDB · List 
241.  10019 Wesleyfraser  245.1  0.43  2  Themis  C  6.65  14.25  LCDB · List 
242.  (225930) 2002 AL_{161}  241.8  0.45  2  MBA (inner)  S  1.26  16.86  LCDB · List 
243.  76272 De Jong  241.4  0.83  2  MBA (outer)  C  5.65  14.97  LCDB · List 
244.  (17127) 1999 JE_{69}  240.7  0.85  2  Eunomia  S  4.35  14.12  LCDB · List 
245.  10415 Mali Lošinj  240.5  0.48  2  MBA (outer)  C  18.77  12.36  LCDB · List 
246.  (45672) 2000 EE_{109}  240.3  0.59  2  MBA (outer)  C  8.70  14.03  LCDB · List 
247.  821 Fanny  236.6  0.28  3−  MBA (outer)  C  23.86  11.84  LCDB · List 
248.  2772 Dugan  235  1.14  2+  MBA (inner)  B  4.34  14.18  LCDB · List 
249.  (115453) 2003 TL_{11}  234.6  0.63  2  MBA (outer)  C  5.08  15.20  LCDB · List 
250.  (369984) 1998 QR_{52}  234  0.88  3  NEO  S  0.46  19.07  LCDB · List 
251.  3033 Holbaek  233.3  1.20  3−  Flora  S  7.82  12.70  LCDB · List 
252.  (198582) 2004 YT_{13}  233.1  0.95  2  MBA (outer)  C  3.65  15.92  LCDB · List 
253.  5048 Moriarty  232.9  0.69  2  MBA (middle)  S  8.12  13.57  LCDB · List 
254.  8449 Maslovets  230.7  0.65  2  MBA (outer)  C  14.64  12.90  LCDB · List 
255.  (48707) 1996 KR1  230  0.75  3−  Hungaria  E  2.02  15.40  LCDB · List 
256.  (95355) 2002 CQ_{141}  229.9  0.27  2  MBA (outer)  C  5.33  15.10  LCDB · List 
257.  (131381) 2001 KU_{39}  227.4  0.77  2  MBA (outer)  C  6.98  14.51  LCDB · List 
258.  (114439) 2003 AL_{13}  227  0.85  2  MBA (inner)  S  1.82  16.06  LCDB · List 
259.  3691 Bede  226.8  0.50  2  NEO  X  1.83  15.22  LCDB · List 
260.  9969 Braille  226.4  0.90  2  Mars crosser  Q  1.64  16.40  LCDB · List 
261.  (157900) 1999 TW_{108}  225.5  0.68  2  MBA (outer)  C  3.63  15.93  LCDB · List 
262.  (78237) 2002 OL_{20}  223.7  0.61  2  Eos  S  2.76  15.55  LCDB · List 
263.  (39796) 1997 TD  223.5  0.92  2  NEO  S  2.15  15.70  LCDB · List 
264.  (18899) 2000 JQ_{2}  222  0.13  2+  Mars crosser  S  3.26  14.80  LCDB · List 
265.  (442742) 2012 WP_{3}  221  0.30  2+  NEO  S  0.90  17.60  LCDB · List 
266.  (49642) 1999 JK_{26}  220  0.67  2  MBA (outer)  C  8.04  14.20  LCDB · List 
267.  65637 Tsniimash  220  0.90  3  Hungaria  E  3.35  14.30  LCDB · List 
268.  (40501) 1999 RM_{82}  217.9  0.59  2  MBA (outer)  C  4.66  15.39  LCDB · List 
269.  (16353) 1974 WB  216.6  0.43  2  Eunomia  S  2.93  14.98  LCDB · List 
270.  18699 Quigley  216.5  0.93  2  MBA (outer)  C  5.87  14.88  LCDB · List 
271.  (38071) 1999 GU_{3}  216  1.50  3  NEO  S  0.36  19.60  LCDB · List 
272.  (114556) 2003 BR_{50}  213.9  0.60  2  Eunomia  S  2.14  15.66  LCDB · List 
273.  10001 Palermo  213.4  0.97  2  Vestian  S  4.31  14.19  LCDB · List 
274.  (8394) 1993 TM12  212.8  0.53  2  Flora  S  3.16  14.67  LCDB · List 
275.  20394 Fatou  212.5  0.62  2  MBA (outer)  C  8.25  14.15  LCDB · List 
276.  1183 Jutta  212.5  0.10  2  MBA (inner)  S  17.83  12.40  LCDB · List 
277.  (33736) 1999 NY_{36}  211  0.40  2  MBA (outer)  C  10.13  13.70  LCDB · List 
278.  1839 Ragazza  210.9  0.99  2+  MBA (outer)  C  22.16  12.00  LCDB · List 
279.  1244 Deira  210.6  0.50  2  MBA (inner)  S  30.89  11.50  LCDB · List 
280.  (28876) 2000 KL_{31}  210.6  0.41  2  MBA (outer)  C  10.06  13.72  LCDB · List 
281.  (28497) 2000 CJ_{69}  210.4  0.87  2  MBA (inner)  S  1.77  16.13  LCDB · List 
282.  (109587) 2001 QJ_{277}  208.4  0.54  2  Eos  S  3.90  14.80  LCDB · List 
283.  (7181) 1991 PH12  206.7  0.50  2  MBA (outer)  C  14.16  12.97  LCDB · List 
284.  (86666) 2000 FL_{10}  206  0.85  2  NEO  S  1.24  16.90  LCDB · List 
285.  2014 PL_{51}  205  0.43  2  NEO  S  0.25  20.40  LCDB · MPC 
286.  (108892) 2001 PM_{2}  204.8  0.86  2  MBA (outer)  C  5.19  15.15  LCDB · List 
287.  (91851) 1999 UA_{8}  204.2  0.87  2  MBA (outer)  C  5.20  15.15  LCDB · List 
288.  (220239) 2002 XG_{15}  204.1  0.28  2  MBA (outer)  C  3.91  15.77  LCDB · List 
289.  (33341) 1998 WA_{5}  204  0.57  3−  Hungaria  E  2.43  15.00  LCDB · List 
290.  (21206) 1994 PT_{28}  203.8  0.85  2  MBA (outer)  C  5.88  14.88  LCDB · List 
291.  (20900) 2000 XW_{4}  203.8  0.21  2  MBA (outer)  C  9.66  13.80  LCDB · List 
292.  (158553) 2002 JS_{1}  203.6  0.73  2  MBA (outer)  C  3.77  15.84  LCDB · List 
293.  (9559) 1987 DH6  203.3  0.63  2  MBA (middle)  S  9.19  13.30  LCDB · List 
294.  (175809) 1999 RU_{182}  202.1  0.82  2  Flora  S  0.97  17.25  LCDB · List 
295.  9340 Williamholden  202.1  0.86  2  Themis  C  8.91  13.61  LCDB · List 
296.  408 Fama  202.1  0.58  3  MBA (outer)  C  41.09  9.30  LCDB · List 
297.  950 Ahrensa  202  0.40  3  Phocaea  S  15.27  11.20  LCDB · List 
298.  3353 Jarvis  202  0.50  2+  Hungaria  C  9.70  13.70  LCDB · List 
299.  (197309) 2003 WS_{140}  200.7  0.41  2  MBA (outer)  C  3.77  15.84  LCDB · List 
300.  (65407) 2002 RP120  200  0.60  2  Cometlike orbit  C  14.60  12.30  LCDB · List 
301.  703 Noëmi  200  0.78  2  Flora  S  8.58  12.50  LCDB · List 
302.  2750 Loviisa  200  0.80  2  Flora  S  6.21  13.20  LCDB · List 
303.  2001 EC_{16}  200  –  2  NEO  S  0.15  22.30  LCDB · MPC 
Periods of 100+ hours
#  Minor planet designation  Rotation period (hours) 
Δmag  Quality (U) 
Orbit or family  Spectral type  Diameter (km) 
Abs. mag (H) 
Refs 

304.  (138691) 2000 SP_{57}  199.1  0.49  2  MBA (outer)  C  6.39  14.70  LCDB · List 
305.  3833 Calingasta  199  1.20  3  Mars crosser  C  2.59  15.30  LCDB · List 
306.  (332841) 2010 EA_{6}  198.7  0.74  2  MBA (outer)  C  2.62  16.64  LCDB · List 
307.  (91599) 1999 TQ_{13}  198.3  0.61  2  MBA (outer)  C  5.21  15.14  LCDB · List 
308.  6734 Benzenberg  196.7  0.41  2  Eos  S  15.51  11.80  LCDB · List 
309.  (5747) 1991 CO3  196.5  0.71  2+  Phocaea  S  8.13  12.50  LCDB · List 
310.  (104182) 2000 EB_{96}  195.8  0.71  2  Vestian  S  1.61  16.33  LCDB · List 
311.  (38701) 2000 QB_{66}  195.1  0.48  2  Hilda  C  18.12  12.44  LCDB · List 
312.  (39596) 1993 QZ_{8}  195.1  0.38  2  Flora  S  1.57  16.19  LCDB · List 
313.  (374702) 2006 RJ_{62}  194.9  0.95  2  MBA (inner)  S  0.58  18.57  LCDB · List 
314.  9054 Hippocastanum  193.6  0.38  2  Eunomia  S  5.33  13.68  LCDB · List 
315.  (41443) 2000 JD_{73}  193.1  0.59  2  MBA (inner)  S  2.85  15.09  LCDB · List 
316.  (124032) 2001 FN_{126}  192.3  0.85  2  MBA (outer)  C  5.15  15.17  LCDB · List 
317.  (229567) 2006 AR_{33}  192.2  0.63  2  MBA (middle)  S  2.11  16.49  LCDB · List 
318.  3064 Zimmer  190.5  0.70  2  Nysa  S  4.74  13.93  LCDB · List 
319.  (109204) 2001 QE_{81}  190.1  0.71  2  MBA (outer)  C  5.83  14.90  LCDB · List 
320.  (29890) 1999 GH_{37}  189.6  0.59  2  MBA (outer)  C  9.63  13.81  LCDB · List 
321.  (13144) 1995 BJ  189  0.81  2  MBA (outer)  C  7.70  13.40  LCDB · List 
322.  (92287) 2000 EX_{14}  188.9  0.40  2  Hilda  C  9.29  13.89  LCDB · List 
323.  (37106) 2000 UC_{101}  188.5  0.69  2  Flora  S  2.48  15.19  LCDB · List 
324.  (20100) 1994 XM  188.4  0.83  2  Themis  C  5.54  14.64  LCDB · List 
325.  (69653) 1998 FT_{101}  188  0.32  2  Flora  S  2.41  15.26  LCDB · List 
326.  1278 Kenya  188  0.75  3  MBA (inner)  S  20.56  10.80  LCDB · List 
327.  (144881) 2004 RM_{99}  187.6  0.67  2  MBA (outer)  C  4.22  15.60  LCDB · List 
328.  28680 Sandralitvin  187.4  0.56  2  MBA (inner)  S  2.21  15.65  LCDB · List 
329.  (183460) 2003 BT_{52}  187.1  0.48  2  MBA (outer)  C  3.71  15.88  LCDB · List 
330.  3345 Tarkovskij  187  0.70  3−  MBA (inner)  C  24.15  12.00  LCDB · List 
331.  (152434) 2005 UV_{438}  187  0.40  2  MBA (outer)  C  4.55  15.44  LCDB · List 
332.  (69420) 1995 YA_{1}  186.9  0.70  2  MBA (inner)  S  2.45  15.42  LCDB · List 
333.  (18892) 2000 ET_{137}  186.8  0.70  2  Eunomia  S  4.26  14.16  LCDB · List 
334.  (11737) 1998 QL_{24}  184.7  0.25  2  MBA (inner)  S  4.27  14.22  LCDB · List 
335.  20371 Ekladyous  184.4  0.54  2  MBA (outer)  C  5.99  14.84  LCDB · List 
336.  (20050) 1993 FO_{21}  184.3  0.20  2  MBA (outer)  C  5.31  15.10  LCDB · List 
337.  (153144) 2000 SY_{230}  183.8  0.66  2  MBA (middle)  S  2.09  16.51  LCDB · List 
338.  (266312) 2007 CY_{37}  183.5  0.53  2  Eunomia  S  1.57  16.33  LCDB · List 
339.  (247388) 2001 YA_{122}  183.5  0.62  2  MBA (outer)  C  3.61  15.94  LCDB · List 
340.  9900 Llull  183.3  0.88  2  MBA (inner)  S  4.30  14.20  LCDB · List 
341.  (375904) 2009 VJ_{105}  183.2  0.73  2  MBA (inner)  S  1.28  16.84  LCDB · List 
342.  5202 Charleseliot  183  0.58  2  MBA (inner)  S  9.53  13.37  LCDB · List 
343.  (13384) 1998 XG_{79}  182.2  0.82  2  MBA (outer)  C  14.80  12.88  LCDB · List 
344.  (190208) 2006 AQ  182  0.25  3−  NEO  S  0.71  18.10  LCDB · List 
345.  (26198) 1997 GJ_{13}  181.1  0.39  2  MBA (inner)  S  2.36  15.50  LCDB · List 
346.  (208173) 2000 QM_{24}  180.6  0.82  2  MBA (outer)  C  5.83  14.90  LCDB · List 
347.  (225534) 2000 SX_{25}  180.4  0.64  2  Eunomia  S  1.51  16.42  LCDB · List 
348.  (76786) 2000 LT_{9}  180.1  0.78  2  Themis  C  7.11  14.10  LCDB · List 
349.  (253106) 2002 UR_{3}  180  0.36  2  NEO  S  1.42  16.60  LCDB · List 
350.  (28294) 1999 CS_{59}  179.8  0.56  2  MBA (outer)  C  8.94  13.97  LCDB · List 
351.  16064 Davidharvey  178.5  0.70  2  NEO  C  4.10  16.56  LCDB · List 
352.  (47330) 1999 XQ_{31}  178.1  0.80  2  MBA (outer)  C  6.83  14.56  LCDB · List 
353.  4181 Kivi  178  0.77  2  Eunomia  S  9.17  12.50  LCDB · List 
354.  641 Agnes  178  0.55  3  Flora  S  8.81  12.64  LCDB · List 
355.  (20231) 1997 YK  178  0.70  2  Hungaria  E  3.85  14.00  LCDB · List 
356.  (186865) 2004 HO_{24}  177.8  0.54  2  MBA (middle)  S  2.58  16.06  LCDB · List 
357.  (277373) 2005 UD_{20}  177.6  0.95  2  MBA (outer)  C  3.42  16.06  LCDB · List 
358.  (22712) 1998 RF_{78}  177.1  0.58  2  MBA (outer)  C  10.00  13.73  LCDB · List 
359.  6236 Mallard  176.3  0.83  2  Themis  C  8.36  13.75  LCDB · List 
360.  4179 Toutatis  176  1.46  3  NEO  S  2.45  15.30  LCDB · List 
361.  4002 Shinagawa  175  0.95  3−  MBA (inner)  S  13.58  11.70  LCDB · List 
362.  (45109) 1999 XZ_{76}  174.9  0.60  2  MBA (outer)  C  7.97  14.22  LCDB · List 
363.  23061 Blueglass  174.6  0.51  2  Themis  C  5.87  14.52  LCDB · List 
364.  16421 Roadrunner  174  1.25  3  Hungaria  E  3.20  14.40  LCDB · List 
365.  (12424) 1995 VM  173.8  1.05  2  Eunomia  S  5.64  13.56  LCDB · List 
366.  3123 Dunham  172.5  0.73  2  Nysa  S  5.68  13.54  LCDB · List 
367.  (30591) 2001 QG_{10}  172.4  0.83  2  MBA (middle)  S  4.24  14.98  LCDB · List 
368.  3679 Condruses  172  1.30  2+  Flora  S  5.41  13.50  LCDB · List 
369.  (348519) 2005 UK_{53}  171.5  0.67  2  MBA (outer)  C  3.08  16.28  LCDB · List 
370.  (130809) 2000 UJ_{5}  170.9  0.71  2  MBA (inner)  S  1.43  16.59  LCDB · List 
371.  (39036) 2000 UQ_{78}  170.4  0.81  2  Flora  S  1.61  16.14  LCDB · List 
372.  9074 Yosukeyoshida  170  1.03  2  Erigone  C  6.76  14.58  LCDB · List 
373.  15861 Ispahan  169.5  0.33  2  MBA (outer)  C  14.34  12.94  LCDB · List 
374.  (38999) 2000 UV_{26}  169.1  0.75  2  Eunomia  S  4.16  14.22  LCDB · List 
375.  (248098) 2004 RG_{85}  167.8  0.61  2  MBA (outer)  C  4.28  15.57  LCDB · List 
376.  1606 Jekhovsky  165.9  0.31  2  MBA (middle)  C  15.47  12.17  LCDB · List 
377.  (274026) 2007 RT_{29}  164.4  0.51  2  MBA (outer)  C  3.92  15.76  LCDB · List 
378.  460 Scania  164.1  0.37  3  MBA (outer)  S  21.63  10.80  LCDB · List 
379.  (50554) 2000 EC_{24}  161.9  0.60  2  MBA (outer)  C  5.61  14.99  LCDB · List 
380.  (16240) 2000 GJ_{115}  161.4  0.74  2  MBA (outer)  C  10.11  13.70  LCDB · List 
381.  (43162) 1999 XE_{126}  161  0.64  2  MBA (outer)  C  5.66  14.96  LCDB · List 
382.  (154807) 2004 PP_{97}  161  0.96  2  NEO  S  0.57  18.60  LCDB · List 
383.  (198605) 2005 AM_{19}  160.8  0.38  2  MBA (outer)  C  3.15  16.24  LCDB · List 
384.  655 Briseïs  160.7  0.40  3  MBA (outer)  C  30.28  10.00  LCDB · List 
385.  (40237) 1998 VM6  160.3  0.22  2  Jupiter trojan  C  19.06  12.33  LCDB · List 
386.  7038 Tokorozawa  160  0.60  2  Themis  C  10.82  13.19  LCDB · List 
387.  5577 Priestley  160  0.85  3−  Hungaria  S  4.30  14.20  LCDB · List 
388.  2735 Ellen  159  1.50  3−  Hungaria  SDU::  3.32  14.32  LCDB · List 
389.  1193 Africa  158.7  0.80  2+  Eunomia  S  12.66  11.80  LCDB · List 
390.  (50176) 2000 AH_{163}  158.6  0.61  2  MBA (outer)  C  7.89  14.24  LCDB · List 
391.  (104505) 2000 GR_{39}  158.5  0.63  2  Eunomia  S  2.91  14.99  LCDB · List 
392.  (83218) 2001 RP_{27}  158  0.80  2  MBA (outer)  C  7.01  14.50  LCDB · List 
393.  (75903) 2000 CQ_{49}  157.9  0.76  2  MBA (middle)  S  3.32  15.51  LCDB · List 
394.  (5733) 1989 AQ  157.8  0.66  2  Themis  C  11.21  13.11  LCDB · List 
395.  (89633) 2001 XM_{210}  157.3  0.23  2  MBA (inner)  S  1.91  15.97  LCDB · List 
396.  (193313) 2000 SR_{308}  157  0.52  2  MBA (middle)  S  1.77  16.88  LCDB · List 
397.  2843 Yeti  156.7  0.45  2  Flora  S  5.82  13.34  LCDB · List 
398.  (67578) 2000 SO_{112}  156.6  0.89  2  Flora  S  1.16  16.85  LCDB · List 
399.  (51777) 2001 MG_{8}  155.9  0.79  2  MBA (outer)  C  10.13  13.70  LCDB · List 
400.  (32534) 2001 PL_{37}  155.5  0.45  2  MBA (outer)  C  11.87  13.36  LCDB · List 
401.  2018 RL  155  1.00  2+  NEO  S  0.33  19.80  LCDB · MPC 
402.  (270325) 2001 XC_{104}  154.4  0.89  2  MBA (inner)  S  1.03  17.30  LCDB · List 
403.  Pluto  153.3  0.30  3  TNO  C  2339.00  0.76  LCDB · List 
404.  6805 Abstracta  152.2  0.78  2  Themis  C  8.41  13.74  LCDB · List 
405.  (76229) 2000 EK_{75}  151.9  0.70  2  Eunomia  S  3.28  14.73  LCDB · List 
406.  (222679) 2001 YY_{54}  151.9  0.57  2  MBA (inner)  S  1.71  16.19  LCDB · List 
407.  763 Cupido  151.5  0.45  3−  Flora  S  8.97  12.60  LCDB · List 
408.  (134553) 1999 RK_{165}  151.4  0.45  2  MBA (inner)  S  1.06  17.23  LCDB · List 
409.  (163732) 2003 KP_{2}  151.1  1.70  3  NEO  S  2.47  15.40  LCDB · List 
410.  2705 Wu  150.5  1.20  3−  Flora  S  6.21  13.20  LCDB · List 
411.  (86206) 1999 TK_{9}  150.1  0.41  2  MBA (outer)  C  6.61  14.63  LCDB · List 
412.  (99812) 2002 LW_{31}  150  0.80  2  MBA (outer)  C  8.05  14.20  LCDB · List 
413.  14815 Rutberg  150  1.00  2  MBA (inner)  S  4.10  14.30  LCDB · List 
414.  3102 Krok  149.4  1.60  3  NEO  QRS  1.48  16.52  LCDB · List 
415.  (15312) 1993 FH_{27}  149.4  0.46  2  MBA (outer)  C  6.13  14.79  LCDB · List 
416.  1909 Alekhin  148.6  0.45  3  MBA (inner)  S  17.33  12.80  LCDB · List 
417.  (86128) 1999 RC_{154}  147.7  0.89  2  Eos  S  5.08  14.22  LCDB · List 
418.  (180962) 2005 MW_{35}  147.4  0.43  2  MBA (inner)  S  1.30  16.80  LCDB · List 
419.  (110119) 2001 SP_{138}  147.4  0.48  2  MBA (inner)  S  2.15  15.70  LCDB · List 
420.  (43052) 1999 VJ_{71}  146.9  0.53  2  Flora  S  1.31  16.57  LCDB · List 
421.  (7743) 1986 JA  146.8  0.93  3−  MBA (inner)  S  5.93  13.50  LCDB · List 
422.  (19485) 1998 HC_{122}  146.5  0.37  2  MBA (outer)  C  12.54  13.24  LCDB · List 
423.  (123184) 2000 UQ_{6}  146.4  0.66  2  MBA (middle)  S  3.03  15.71  LCDB · List 
424.  (143719) 2003 UU_{177}  146.3  0.56  2  MBA (outer)  C  3.51  16.00  LCDB · List 
425.  823 Sisigambis  146  0.70  2  Flora  S  15.74  11.37  LCDB · List 
426.  15806 Kohei  145.7  0.29  2  Eos  S  8.64  13.07  LCDB · List 
427.  (7138) 1994 AK15  145.3  0.26  2  MBA (inner)  S  5.05  13.85  LCDB · List 
428.  (25535) 1999 XF_{144}  145.2  0.88  2  Eunomia  S  5.07  13.79  LCDB · List 
429.  1689 FlorisJan  145  0.40  3  MBA (inner)  S  16.21  11.74  LCDB · List 
430.  (195957) 2002 RJ_{165}  145  0.31  2  MBA (outer)  C  4.06  15.68  LCDB · List 
431.  (87580) 2000 RE_{16}  144.9  0.45  2  MBA (middle)  S  3.78  15.23  LCDB · List 
432.  4158 Santini  144.4  0.37  2  MBA (outer)  C  26.64  11.60  LCDB · List 
433.  (109978) 2001 ST_{54}  144  0.30  2  MBA (outer)  C  7.01  14.50  LCDB · List 
434.  (52786) 1998 QP_{42}  144  0.50  2  Flora  S  1.79  15.90  LCDB · List 
435.  1137 Raïssa  142.8  0.56  3−  MBA (inner)  S  23.66  10.78  LCDB · List 
436.  (248503) 2005 UN_{480}  142.7  0.90  2  MBA (outer)  C  3.62  15.93  LCDB · List 
437.  (285032) 2011 EX_{26}  140.9  0.55  2  MBA (outer)  C  2.89  16.42  LCDB · List 
438.  (162921) 2001 OL_{11}  140.1  0.34  2  MBA (outer)  C  4.21  15.61  LCDB · List 
439.  (39618) 1994 LT  140  0.85  2  Hungaria  E  2.02  15.40  LCDB · List 
440.  2423 Ibarruri  139.8  0.74  3  Mars crosser  C  6.50  13.30  LCDB · List 
441.  (51010) 2000 GN_{103}  139.2  0.39  2  Nysa  S  1.75  16.10  LCDB · List 
442.  1473 Ounas  139.1  0.60  3  MBA (inner)  S  17.62  11.70  LCDB · List 
443.  38454 Boroson  138.8  0.85  2  Eunomia  S  5.18  13.74  LCDB · List 
444.  (201746) 2003 UN_{276}  138.8  0.83  2  MBA (outer)  C  3.81  15.83  LCDB · List 
445.  (66775) 1999 TS_{220}  138.3  0.49  2  MBA (outer)  C  5.52  15.02  LCDB · List 
446.  (144564) 2004 FE_{13}  138.1  0.87  2  Flora  S  1.75  15.96  LCDB · List 
447.  (17149) 1999 JM_{105}  138.1  0.50  2  MBA (outer)  C  7.81  14.26  LCDB · List 
448.  1451 Granö  138  0.65  2+  Flora  S  7.13  13.10  LCDB · List 
449.  1329 Eliane  137.8  0.43  2  MBA (middle)  S  19.63  10.90  LCDB · List 
450.  (16592) 1992 TM1  137.7  0.19  2  Eunomia  S  10.10  12.29  LCDB · List 
451.  2792 Ponomarev  137.6  0.44  2  MBA (inner)  S  5.98  13.48  LCDB · List 
452.  17645 Inarimori  137.4  0.69  2  MBA (outer)  C  12.33  13.27  LCDB · List 
453.  (64963) 2001 YP_{144}  137.2  0.65  2  Vestian  S  2.06  15.80  LCDB · List 
454.  (53337) 1999 JX_{42}  137.1  0.41  2  MBA (outer)  C  5.75  14.93  LCDB · List 
455.  (17689) 1997 CS  137.1  0.46  2  Eos  S  8.33  13.15  LCDB · List 
456.  (137065) 1998 WH_{6}  136.9  0.80  2  MBA (inner)  S  1.48  16.51  LCDB · List 
457.  (20875) 2000 VU_{49}  136.7  0.65  2  MBA (outer)  C  7.32  14.41  LCDB · List 
458.  (25505) 1999 XQ_{95}  136.6  0.31  2  MBA (inner)  S  5.17  13.80  LCDB · List 
459.  1954 Kukarkin  136.4  0.80  3−  MBA (outer)  C  30.59  11.30  LCDB · List 
460.  (38990) 2000 UZ_{17}  136.2  0.70  2  MBA (outer)  C  3.67  15.91  LCDB · List 
461.  (53319) 1999 JM8  136  0.70  2  NEO  X  7.00  15.20  LCDB · List 
462.  (14452) 1992 WB9  135.8  0.59  2  MBA (outer)  C  8.88  13.99  LCDB · List 
463.  (22100) 2000 GV_{93}  135.7  0.27  2  MBA (outer)  C  9.54  13.83  LCDB · List 
464.  16231 Jessberger  135.7  0.87  2  Themis  C  5.98  14.48  LCDB · List 
465.  8457 Billgolisch  135.7  0.19  2  MBA (middle)  S  6.42  14.08  LCDB · List 
466.  (20562) 1999 RV_{120}  135.4  0.43  2+  MBA (inner)  S  5.66  13.60  LCDB · List 
467.  (301945) 2000 BC_{15}  135.3  0.44  2  Eunomia  S  1.41  16.56  LCDB · List 
468.  (15659) 2141 T2  135.2  0.47  2  MBA (outer)  C  7.96  14.22  LCDB · List 
469.  (316249) 2010 OL_{55}  135  0.47  2  MBA (outer)  C  3.07  16.29  LCDB · List 
470.  (443103) 2013 WT_{67}  135  1.10  2  NEO  S  0.75  18.00  LCDB · List 
471.  (161101) 2002 PL_{154}  134.6  0.61  2  MBA (outer)  C  3.68  15.90  LCDB · List 
472.  (275300) 2010 OH_{118}  134.5  0.80  2  MBA (outer)  C  3.85  15.80  LCDB · List 
473.  (109244) 2001 QZ_{98}  134.4  0.36  2  MBA (inner)  S  1.86  16.02  LCDB · List 
474.  (114334) 2002 XW_{65}  134.4  0.54  2  MBA (inner)  S  3.96  14.37  LCDB · List 
475.  (51801) 2001 NZ_{2}  133.9  0.18  2  MBA (outer)  C  8.20  14.16  LCDB · List 
476.  (5626) 1991 FE  133.6  0.44  2  NEO  S  4.30  14.20  LCDB · List 
477.  (23478) 1991 BZ  133.4  0.36  2  MBA (outer)  C  8.46  14.09  LCDB · List 
478.  (110586) 2001 TN_{122}  133.2  0.67  2  MBA (outer)  C  4.66  15.39  LCDB · List 
479.  2546 Libitina  132.7  0.35  2+  MBA (middle)  S  18.34  11.80  LCDB · List 
480.  (23501) 1992 CK_{1}  132.7  0.82  2  MBA (outer)  C  8.82  14.00  LCDB · List 
481.  1512 Oulu  132.3  0.33  2+  Hilda  P  82.72  9.62  LCDB · List 
482.  (157312) 2004 SU_{32}  131.7  0.52  2  MBA (outer)  C  3.22  16.19  LCDB · List 
483.  7898 Ohkuma  131.3  0.60  2  Flora  S  4.18  14.06  LCDB · List 
484.  1989 Tatry  131.3  0.50  2  Vestian  C  17.60  12.50  LCDB · List 
485.  2874 Jim Young  131.3  0.75  2  Flora  S  7.13  12.90  LCDB · List 
486.  (93894) 2000 WM_{141}  131.3  0.40  2  MBA (inner)  S  4.12  14.29  LCDB · List 
487.  (143035) 2002 VS_{121}  131.2  0.76  2  Eunomia  S  2.23  15.57  LCDB · List 
488.  5672 Libby  131.1  0.66  2  MBA (inner)  S  6.03  13.46  LCDB · List 
489.  (111074) 2001 VW_{51}  130.9  0.77  2  MBA (outer)  C  3.20  16.20  LCDB · List 
490.  (152863) 1999 XZ_{114}  130.4  0.50  2  MBA (outer)  C  4.52  15.45  LCDB · List 
491.  9228 Nakahiroshi  130.3  0.25  2  MBA (outer)  C  17.82  12.47  LCDB · List 
492.  (143116) 2002 XT_{27}  130.1  0.32  2  Eunomia  S  2.05  15.76  LCDB · List 
493.  2000 Herschel  130  1.16  2  MBA (inner)  S  16.71  11.25  LCDB · List 
494.  3839 Bogaevskij  129.9  0.44  2  Nysa  S  5.79  13.50  LCDB · List 
495.  5807 Mshatka  129.8  0.63  2  MBA (outer)  C  13.98  13.00  LCDB · List 
496.  244 Sita  129.5  0.82  3−  Flora  S  11.08  11.90  LCDB · List 
497.  (267729) 2003 FC_{5}  129.5  0.50  2  NEO  S  0.56  18.61  LCDB · List 
498.  (62853) 2000 UO_{76}  129.3  0.88  2  MBA (outer)  C  5.61  14.98  LCDB · List 
499.  22812 Ricker  129.2  0.58  2  Nysa  S  1.79  16.05  LCDB · List 
500.  (89182) 2001 UQ_{68}  128.8  0.84  2  MBA (outer)  C  6.80  14.56  LCDB · List 
501.  (15274) 1991 GO_{6}  128.6  0.30  2  Eunomia  S  3.88  14.37  LCDB · List 
502.  (31091) 1997 BE_{9}  128.4  0.77  2  Hungaria  E  1.41  16.18  LCDB · List 
503.  (135421) 2001 UC_{49}  128.3  0.61  2  MBA (outer)  C  4.86  15.29  LCDB · List 
504.  (13468) 3378 T3  128.1  0.55  2  MBA (inner)  S  2.40  15.47  LCDB · List 
505.  (62340) 2000 SO_{130}  128  0.62  2  MBA (outer)  C  5.44  15.05  LCDB · List 
506.  2430 Bruce Helin  128  0.67  2  Phocaea  S  11.55  11.90  LCDB · List 
507.  16589 Hastrup  128  0.62  2  Hungaria  E  2.19  14.96  LCDB · List 
508.  (136940) 1998 QG_{45}  127.5  0.51  2  MBA (inner)  S  1.57  16.39  LCDB · List 
509.  25512 Anncomins  127.1  0.26  2  Flora  S  2.26  15.40  LCDB · List 
510.  (170914) 2004 XN_{122}  126.8  0.61  2  MBA (inner)  S  1.15  17.05  LCDB · List 
511.  (60310) 1999 XD_{215}  126.6  0.62  2  Eunomia  S  2.57  15.26  LCDB · List 
512.  4327 Ries  126.6  0.85  2  MBA (outer)  C  20.97  12.12  LCDB · List 
513.  (14451) 1992 WR5  126.6  0.38  2  MBA (outer)  C  15.07  12.84  LCDB · List 
514.  (124620) 2001 SS_{50}  126.5  0.39  2  Erigone  C  2.92  16.40  LCDB · List 
515.  (128693) 2004 RZ_{92}  126.4  0.93  2  MBA (outer)  C  4.10  15.66  LCDB · List 
516.  (242864) 2006 GJ_{50}  126.3  1.18  2  MBA (middle)  SC  2.21  16.40  LCDB · List 
517.  571 Dulcinea  126.3  0.50  3  MBA (inner)  S  14.29  11.59  LCDB · List 
518.  3020 Naudts  126.2  0.46  2  MBA (outer)  C  16.02  12.71  LCDB · List 
519.  (190395) 1999 TR_{109}  126  0.53  2  MBA (outer)  C  3.65  15.91  LCDB · List 
520.  (228328) 2000 RO_{19}  125.6  0.76  2  MBA (middle)  S  2.28  16.33  LCDB · List 
521.  6995 Minoyama  125.3  0.76  2  MBA (inner)  S  5.72  13.58  LCDB · List 
522.  (110059) 2001 SK_{107}  125.2  0.46  2  MBA (outer)  C  4.84  15.30  LCDB · List 
523.  (95704) 2002 JS_{124}  125.1  1.00  2  MBA (inner)  S  2.71  15.20  LCDB · List 
524.  1575 Winifred  125  1.20  3  Phocaea  S  9.40  12.10  LCDB · List 
525.  (152679) 1998 KU2  125  1.35  2  NEO  S  1.42  16.60  LCDB · List 
526.  (119553) 2001 VH_{36}  124.1  0.90  2  MBA (inner)  S  2.51  15.37  LCDB · List 
527.  33699 Jessiegan  124  0.33  2  MBA (outer)  C  6.31  14.73  LCDB · List 
528.  2678 Aavasaksa  124  1.30  2  Flora  S  8.58  12.50  LCDB · List 
529.  (35532) 1998 FV_{71}  123.8  0.40  2  MBA (middle)  S  3.89  15.17  LCDB · List 
530.  (234886) 2002 TL_{88}  123.7  0.67  2  MBA (outer)  C  3.30  16.14  LCDB · List 
531.  959 Arne  123.7  0.24  3−  MBA (outer)  C  57.20  10.80  LCDB · List 
532.  (372858) 2010 VB_{171}  123.5  0.39  2  Mars crosser  S  0.68  18.21  LCDB · List 
533.  2629 Rudra  123.2  0.58  2  Mars crosser  S  2.19  15.67  LCDB · List 
534.  (31173) 1997 XF_{1}  122.8  0.67  2+  Hungaria  E  2.54  14.90  LCDB · List 
535.  14980 Gustavbrom  122.6  0.51  2  MBA (outer)  C  5.71  14.95  LCDB · List 
536.  4689 Donn  122.5  0.64  2+  Flora  S  5.51  13.46  LCDB · List 
537.  (134555) 1999 RN_{169}  122.4  0.29  2  Erigone  C  2.88  16.43  LCDB · List 
538.  870 Manto  122.3  0.80  3  MBA (inner)  S  13.71  11.68  LCDB · List 
539.  1775 Zimmerwald  122  0.60  2+  Eunomia  S  11.55  12.00  LCDB · List 
540.  (26084) 1981 EK_{17}  122  0.68  2  Vestian  S  2.83  15.11  LCDB · List 
541.  (97314) 1999 XV_{206}  121.7  0.67  2  MBA (outer)  C  4.83  15.31  LCDB · List 
542.  (21002) 1987 QU_{7}  121.6  0.41  2  MBA (inner)  S  3.13  14.89  LCDB · List 
543.  12465 Perth Amboy  121.6  0.87  2  Nysa  S  2.40  15.41  LCDB · List 
544.  1007 Pawlowia  121  0.51  2  MBA (outer)  K  30.59  11.30  LCDB · List 
545.  (76708) 2000 HE_{101}  121  0.67  2  MBA (outer)  C  6.15  14.78  LCDB · List 
546.  (247283) 2001 SC_{187}  120.4  0.93  2  MBA (outer)  C  3.82  15.82  LCDB · List 
547.  988 Appella  120  0.40  2  Themis  S  25.77  11.60  LCDB · List 
548.  (21207) 1994 PH_{29}  120  0.50  2  MBA (outer)  C  8.43  14.10  LCDB · List 
549.  2936 Nechvile  119.6  0.48  2  MBA (middle)  S  13.52  12.46  LCDB · List 
550.  (443923) 2002 RU_{25}  119.4  0.98  2  NEO  S  0.90  17.60  LCDB · List 
551.  9910 Vogelweide  118.9  0.74  2  Koronis  S  4.94  13.70  LCDB · List 
552.  1455 Mitchella  118.7  0.60  2+  Flora  S  7.47  12.80  LCDB · List 
553.  (122007) 2000 GC_{7}  118.2  0.74  2  MBA (inner)  S  1.96  15.90  LCDB · List 
554.  4951 Iwamoto  118  0.38  3  MBA (inner)  S  5.53  13.74  LCDB · List 
555.  4635 Rimbaud  117.9  1.08  2+  Vestian  S  7.46  13.00  LCDB · List 
556.  7694 Krasetin  117.8  0.92  3−  MBA (outer)  C  20.21  12.20  LCDB · List 
557.  (163594) 2002 TH_{207}  117.7  0.94  2  MBA (outer)  C  3.05  16.31  LCDB · List 
558.  (36713) 2000 RV_{33}  116.9  0.52  2  MBA (outer)  C  6.12  14.80  LCDB · List 
559.  (376059) 2010 FY_{14}  116.9  0.60  2  MBA (outer)  C  4.20  15.61  LCDB · List 
560.  (17297) 3560 PL  116.8  0.74  2  MBA (outer)  C  17.48  12.51  LCDB · List 
561.  (21954) 1999 VU_{178}  115.7  0.41  2  Eunomia  S  3.14  14.83  LCDB · List 
562.  (146918) 2002 CT_{225}  115.7  0.83  2  MBA (outer)  C  5.25  15.13  LCDB · List 
563.  4219 Nakamura  115.5  0.20  2  Nysa  S  4.62  13.99  LCDB · List 
564.  12868 Onken  115  0.60  2  MBA (outer)  C  15.33  12.80  LCDB · List 
565.  (280589) 2004 TX_{348}  114.7  0.46  2  MBA (outer)  C  2.55  16.69  LCDB · List 
566.  (75353) 1999 XL_{69}  114.7  0.30  2  MBA (inner)  S  1.75  16.14  LCDB · List 
567.  (107855) 2001 FU_{78}  114.6  0.37  2  Flora  S  1.79  15.90  LCDB · List 
568.  (201710) 2003 UO_{167}  114.6  0.75  2  MBA (outer)  C  3.51  16.00  LCDB · List 
569.  (121534) 1999 UJ_{41}  114.5  0.57  2  MBA (outer)  C  3.13  16.25  LCDB · List 
570.  (253198) 2002 XO_{60}  114.5  0.67  2  MBA (inner)  S  1.50  16.49  LCDB · List 
571.  (143651) 2003 QO104  114.4  1.60  3  NEO  S  1.88  16.00  LCDB · List 
572.  2845 Franklinken  114  0.80  3−  Baptistina  C  12.18  13.30  LCDB · List 
573.  (18582) 1997 XK9  114  0.94  3  Hungaria  E  4.84  13.50  LCDB · List 
574.  (15533) 2000 AP_{138}  114  0.38  3  MBA (inner)  S  4.42  14.18  LCDB · List 
575.  (116301) 2003 YZ_{60}  114  0.80  2  MBA (outer)  C  3.38  16.08  LCDB · List 
576.  (258817) 2002 NY_{57}  113.8  0.60  2  MBA (outer)  C  4.61  15.41  LCDB · List 
577.  (13593) 1994 NF_{1}  113.7  0.64  2  MBA (inner)  S  4.02  14.34  LCDB · List 
578.  (200481) 2000 YX_{17}  113.6  1.11  2  MBA (inner)  S  1.84  16.04  LCDB · List 
579.  (48593) 1994 VF  113.3  0.81  2  MBA (inner)  S  2.39  15.48  LCDB · List 
580.  6582 Flagsymphony  113.3  0.28  2+  MBA (outer)  C  15.33  12.80  LCDB · List 
581.  3138 Ciney  113  0.56  2+  Flora  S  5.93  13.30  LCDB · List 
582.  (15778) 1993 NH  113  0.61  2  Mars crosser  S  3.41  14.70  LCDB · List 
583.  (411201) 2010 LJ_{14}  113  0.85  2  NEO  S  0.82  17.80  LCDB · List 
584.  (40893) 1999 TL_{138}  113  0.35  2  MBA (outer)  C  4.90  15.28  LCDB · List 
585.  100229 Jeanbailly  112.9  0.51  2  Hilda  C  7.70  14.30  LCDB · List 
586.  7489 Oribe  112.7  0.80  2  MBA (outer)  C  9.65  13.81  LCDB · List 
587.  5561 Iguchi  112.4  0.43  2  Flora  S  5.93  13.30  LCDB · List 
588.  21609 Williamcaleb  112  0.50  2  MBA (inner)  S  4.71  14.00  LCDB · List 
589.  (378610) 2008 FT_{6}  112  0.77  2  NEO  S  0.98  17.40  LCDB · List 
590.  3383 Koyama  111.8  0.62  2  MBA (inner)  S  8.76  12.65  LCDB · List 
591.  (247651) 2002 WK_{15}  111.6  0.61  2  MBA (outer)  C  3.34  16.11  LCDB · List 
592.  (102588) 1999 UM_{52}  111.2  0.46  2  MBA (outer)  C  6.69  14.60  LCDB · List 
593.  5390 Huichiming  111  0.75  2+  Hungaria  E  4.62  13.60  LCDB · List 
594.  9233 Itagijun  111  0.60  2  MBA (inner)  S  7.13  13.10  LCDB · List 
595.  (31068) 1996 TT54  110.8  0.64  2  MBA (middle)  S  7.12  13.85  LCDB · List 
596.  (112324) 2002 MA_{3}  110.8  0.59  2  Flora  S  1.16  16.85  LCDB · List 
597.  (230290) 2001 YQ_{13}  110.5  0.84  2  MBA (inner)  S  1.48  16.51  LCDB · List 
598.  (219543) 2001 QB_{293}  110.4  0.40  2  MBA (inner)  S  1.53  16.44  LCDB · List 
599.  (93756) 2000 WZ_{8}  110.3  0.55  2  MBA (inner)  S  3.41  14.70  LCDB · List 
600.  (42500) 1992 RV_{6}  110.2  0.63  2  Themis  C  5.00  14.86  LCDB · List 
601.  (58085) 1199 T3  110  0.80  2  MBA (outer)  C  5.31  15.10  LCDB · List 
602.  (223751) 2004 RR_{196}  110  0.55  2  MBA (outer)  C  3.81  15.83  LCDB · List 
603.  (60024) 1999 TW_{47}  109.9  0.28  2  MBA (outer)  C  4.39  15.51  LCDB · List 
604.  343 Ostara  109.9  0.52  3−  MBA (inner)  CSGU  19.03  11.74  LCDB · List 
605.  (42282) 2001 SB_{283}  109.7  0.83  2  Eunomia  S  3.44  14.63  LCDB · List 
606.  (366326) 2013 EW_{39}  109.6  0.58  2  MBA (middle)  S  1.93  16.69  LCDB · List 
607.  (15701) 1987 RG1  109.4  0.50  2  MBA (inner)  S  3.25  14.81  LCDB · List 
608.  (108067) 2001 FO_{165}  109.3  0.73  2  Flora  S  1.28  16.63  LCDB · List 
609.  (149612) 2004 EO_{7}  109.3  0.80  2  Flora  S  1.25  16.68  LCDB · List 
610.  (134696) 1999 XZ_{96}  109.1  0.44  2  MBA (inner)  S  1.41  16.62  LCDB · List 
611.  (523186) 2016 UG_{5}  109.1  0.97  2  Hungaria  ES  0.42  18.80  LCDB · List 
612.  9739 Powell  109  0.40  2  Hungaria  E  3.82  13.70  LCDB · List 
613.  (5773) 1989 NO  109  0.74  2  Flora  S  5.17  13.60  LCDB · List 
614.  5518 Mariobotta  108.6  0.56  2+  Flora  S  7.14  12.90  LCDB · List 
615.  946 Poësia  108.5  0.32  2+  Themis  FU  43.75  10.42  LCDB · List 
616.  (162772) 2000 WX_{175}  108.5  0.75  2  MBA (inner)  S  1.87  16.01  LCDB · List 
617.  (119175) 2001 QU_{53}  108.5  0.71  2  MBA (inner)  S  1.20  16.98  LCDB · List 
618.  (37212) 2000 WO_{126}  108.2  1.04  2  MBA (outer)  C  5.93  14.86  LCDB · List 
619.  57868 Pupin  108.1  0.93  3−  MBA (inner)  S  2.59  15.30  LCDB · List 
620.  989 Schwassmannia  107.9  0.39  3  MBA (middle)  S  12.81  11.90  LCDB · List 
621.  (201187) 2002 PK_{70}  107.1  0.44  2  MBA (outer)  C  4.22  15.60  LCDB · List 
622.  5711 Eneev  107.1  0.15  2  Hilda  C  38.81  11.10  LCDB · List 
623.  1703 Barry  107.1  0.50  3  Flora  S  9.54  12.10  LCDB · List 
624.  6626 Mattgenge  107.1  0.48  2  MBA (outer)  C  6.53  14.66  LCDB · List 
625.  (113507) 2002 TS_{7}  106.6  0.62  2  MBA (outer)  C  6.97  14.51  LCDB · List 
626.  3935 Toatenmongakkai  106.3  0.58  2  MBA (inner)  S  11.50  11.90  LCDB · List 
627.  (69317) 1993 FB_{20}  106.3  1.50  3−  MBA (inner)  S  2.97  15.00  LCDB · List 
628.  5691 Fredwatson  106  1.20  3−  Phocaea  S  6.06  13.30  LCDB · List 
629.  3043 San Diego  105.7  0.60  3−  Hungaria  E  4.42  13.70  LCDB · List 
630.  (147241) 2002 XW_{62}  105.5  0.67  2  MBA (inner)  S  1.53  16.44  LCDB · List 
631.  1773 Rumpelstilz  105.4  0.77  3  Vestian  S  12.39  11.90  LCDB · List 
632.  9488 Huia  105.3  0.80  2  Flora  S  2.71  15.00  LCDB · List 
633.  7153 Vladzakharov  105.1  0.76  2  MBA (inner)  S  3.06  14.94  LCDB · List 
634.  (33313) 1998 KJ_{60}  105  0.62  2  MBA (outer)  C  6.49  14.67  LCDB · List 
635.  33319 Kunqu  105  0.90  2+  Hungaria  E  2.43  15.00  LCDB · List 
636.  (106620) 2000 WL_{124}  104.5  0.58  2  Hungaria  E  2.43  15.00  LCDB · List 
637.  (25866) 2000 GA_{100}  104.5  0.52  2  MBA (outer)  C  9.96  13.74  LCDB · List 
638.  (6003) 1988 VO1  104.4  0.42  2  Flora  S  5.67  13.40  LCDB · List 
639.  (161221) 2002 XJ_{1}  104.2  0.42  2  MBA (outer)  C  4.66  15.39  LCDB · List 
640.  2077 Kiangsu  104.2  0.30  2+  Mars crosser  S  5.66  13.60  LCDB · List 
641.  (8173) 1991 RX23  104.1  0.74  2  Eos  S  5.88  13.90  LCDB · List 
642.  (93738) 2000 VQ_{50}  104  0.50  2  Eunomia  S  3.41  14.65  LCDB · List 
643.  (6425) 1994 WZ3  103.9  0.92  2  Eunomia  C  10.06  12.30  LCDB · List 
644.  (44683) 1999 RR_{197}  103.8  0.72  2  Flora  S  2.14  15.51  LCDB · List 
645.  (145553) 2006 LN_{5}  103.3  0.56  2  MBA (inner)  S  1.26  16.86  LCDB · List 
646.  14819 Nikolaylaverov  103.3  0.58  2  MBA (inner)  S  3.07  14.93  LCDB · List 
647.  (22357) 1992 YJ  103  0.54  2  MBA (inner)  S  5.66  13.60  LCDB · List 
648.  26447 Akrishnan  102.9  0.56  2  Nysa  S  2.37  15.44  LCDB · List 
649.  (112516) 2002 PG_{26}  102.9  0.63  2  MBA (outer)  C  4.78  15.33  LCDB · List 
650.  617 Patroclus  102.8  0.07  3  Jupiter trojan  P  140.92  8.19  LCDB · List 
651.  (13378) 1998 VF35  102.5  0.77  2  Eos  S  10.43  12.66  LCDB · List 
652.  (203819) 2002 TZ_{237}  102.3  0.20  2  MBA (outer)  C  4.08  15.68  LCDB · List 
653.  (214869) 2007 PA8  102.2  0.58  3  NEO  S  1.38  16.67  LCDB · List 
654.  (96144) 3466 T3  102.2  0.68  2  MBA (outer)  C  4.27  15.58  LCDB · List 
655.  (7663) 1994 RX1  102.1  0.34  2  Phocaea  S  4.21  14.09  LCDB · List 
656.  (91339) 1999 JR_{15}  101.9  0.35  2  MBA (inner)  S  4.06  14.32  LCDB · List 
657.  (197299) 2003 WH_{128}  101.8  0.60  2  MBA (outer)  C  4.11  15.66  LCDB · List 
658.  (43464) 2001 AA_{9}  101.6  0.75  2  Flora  S  1.98  15.68  LCDB · List 
659.  (123754) 2001 AR_{32}  101.4  0.90  2  MBA (inner)  S  2.06  15.80  LCDB · List 
660.  (33295) 1998 KV_{40}  101.3  0.98  2  Eos  S  4.97  14.27  LCDB · List 
661.  19763 Klimesh  101  0.67  2  Phocaea  S  7.29  13.27  LCDB · List 
662.  930 Westphalia  100.7  0.15  2  MBA (inner)  C  36.53  11.20  LCDB · List 
663.  1097 Vicia  100.5  0.14  2  MBA (middle)  S  20.99  12.00  LCDB · List 
664.  (169855) 2002 RU_{41}  100.4  0.90  2  MBA (outer)  C  4.72  15.36  LCDB · List 
665.  2004 XP14  100  –  2  NEO  S  0.30  19.40  LCDB · MPC 
666.  2005 OE_{3}  100  –  2  NEO  S  0.26  20.30  LCDB · MPC 
Potentially slow rotators
Potentially slow rotators have their rotation period estimated based on a fragmentary light curve. They are listed separately from the more reliable results above, that have a quality code (U) of 2 or higher. The periods for potentially slow rotators may be completely wrong (U = 1), have no complete and conclusive result (U = n.a.), a large error margins of more than 30% (U = 2−), or anything in between.
Possible periods above 1000 hours
Minor planet designation  Rotation period (hours) 
Δmag  Quality (U) 
Orbit or family  Spectral type  Diameter (km) 
Abs. mag (H) 
Refs 

(300163) 2006 VW139  3240  –  n.a.  MBA (outer)  C  3.20  16.20  LCDB · List 
(11474) 1982 SM2  1917.2  0.04  1  Baptistina  C  5.71  14.94  LCDB · List 
(145727) 1994 PL_{29}  1084.9  0.06  1  Nysa  S  1.43  16.54  LCDB · List 
5316 Filatov  1061.4  0.07  1  MBA (outer)  C  22.95  11.92  LCDB · List 
Possible periods between 500 and 1000 hours
Minor planet designation  Rotation period (hours) 
Δmag  Quality (U) 
Orbit or family  Spectral type  Diameter (km) 
Abs. mag (H) 
Refs 

(79590) 1998 RX_{19}  988.8  0.07  1  Flora  S  1.87  15.81  LCDB · List 
9556 Gaywray  920  0.50  2−  Phocaea  S  6.48  13.71  LCDB · List 
(111346) 2001 XS_{103}  747.7  0.07  1  Mars crosser  S  1.18  17.01  LCDB · List 
3322 Lidiya  710  0.60  1  Phocaea  S  7.99  12.70  LCDB · List 
17091 Senthalir  679.9  0.07  1  MBA (outer)  C  8.37  14.11  LCDB · List 
(22121) 2000 SM_{107}  537.5  0.05  1  MBA (inner)  S  2.59  15.30  LCDB · List 
(188077) 2001 XW_{47}  525  0.30  2−  Hungaria  E  1.60  15.90  LCDB · List 
(24454) 2000 QF_{198}  500  0.40  2−  Jupiter trojan  C  29.21  11.40  LCDB · List 
Possible periods of 400+ hours
Minor planet designation  Rotation period (hours) 
Δmag  Quality (U) 
Orbit or family  Spectral type  Diameter (km) 
Abs. mag (H) 
Refs 

20571 Tiamorrison  450  0.60  2−  Flora  S  2.97  14.80  LCDB · List 
12860 Turney  438.1  0.08  1  MBA (inner)  S  3.04  14.95  LCDB · List 
(41917) 2000 WC_{153}  412.6  0.09  1  Flora  S  1.73  15.97  LCDB · List 
(106647) 2000 WC_{135}  411.1  0.07  1  Flora  S  1.44  16.38  LCDB · List 
(39687) 1996 RL_{3}  402.5  0.10  1  Flora  S  1.70  16.01  LCDB · List 
7119 Hiera  400  0.10  1  Jupiter trojan  C  76.45  9.70  LCDB · List 
(13366) 1998 US24  400  0.23  2−  Jupiter trojan  C  32.03  11.20  LCDB · List 
Possible periods of 300+ hours
Minor planet designation  Rotation period (hours) 
Δmag  Quality (U) 
Orbit or family  Spectral type  Diameter (km) 
Abs. mag (H) 
Refs 

(22135) 2000 UA_{100}  393  0.25  2−  Eunomia  S  6.96  13.10  LCDB · List 
(98063) 2000 RG_{48}  358.3  0.08  1  Flora  S  1.73  15.98  LCDB · List 
(266992) 2010 XR_{43}  350  –  n.a.  Jupiter trojan  C  12.18  13.30  LCDB · List 
5511 Cloanthus  336  0.49  2−  Jupiter trojan  C  48.48  10.30  LCDB · List 
(381677) 2009 BJ_{81}  325  0.40  n.a.  NEO  S  0.65  18.30  LCDB · List 
(36227) 1999 UR_{5}  322  0.07  1  MBA (outer)  C  12.11  13.31  LCDB · List 
Possible periods of 200+ hours
Minor planet designation  Rotation period (hours) 
Δmag  Quality (U) 
Orbit or family  Spectral type  Diameter (km) 
Abs. mag (H) 
Refs 

(17122) 1999 JH_{63}  290.1  0.09  1  Koronis  S  4.84  13.74  LCDB · List 
(31013) 1996 DR  280  0.50  2−  MBA (inner)  S  4.50  14.10  LCDB · List 
3184 Raab  274.9  0.09  1  MBA (middle)  S  13.25  12.51  LCDB · List 
7188 Yoshii  260  0.49  1+  Flora  S  4.50  13.90  LCDB · List 
(103405) 2000 AM_{134}  260  0.50  1  MBA (inner)  S  1.71  16.20  LCDB · List 
(41609) 2000 SR_{117}  259.9  0.07  1  Erigone  C  3.13  16.25  LCDB · List 
(5025) 1986 TS6  250  0.20  1  Jupiter trojan  C  57.56  10.30  LCDB · List 
(15977) 1998 MA11  250  0.30  2−  Jupiter trojan  C  46.30  10.40  LCDB · List 
(84045) 2002 PN_{58}  240  0.50  1  MBA (inner)  S  2.06  15.80  LCDB · List 
(65240) 2002 EU_{106}  230  0.22  1  Jupiter trojan  C  16.81  12.60  LCDB · List 
(35259) 1996 HN_{24}  230  0.45  2−  Flora  S  3.58  14.40  LCDB · List 
(185085) 2006 RG_{92}  220  0.40  1  MBA (outer)  C  3.06  16.30  LCDB · List 
8885 Sette  212  0.50  2−  MBA (inner)  S  5.41  13.70  LCDB · List 
(108592) 2001 MC_{13}  208.1  0.08  1  MBA (inner)  S  1.90  15.98  LCDB · List 
(145425) 2005 QP_{39}  200  0.60  2−  MBA (outer)  C  5.57  15.00  LCDB · List 
(43904) 1995 WO  200  0.34  2−  MBA (inner)  S  2.84  15.10  LCDB · List 
Possible periods of 100+ hours
Minor planet designation  Rotation period (hours) 
Δmag  Quality (U) 
Orbit or family  Spectral type  Diameter (km) 
Abs. mag (H) 
Refs 

(51220) 2000 JG_{23}  198.8  0.08  1  Eunomia  S  2.85  15.04  LCDB · List 
(90585) 2032 PL  196.5  0.08  1  MBA (inner)  S  2.25  15.60  LCDB · List 
(109362) 2001 QO_{157}  194.8  0.08  1  Vestian  S  1.66  16.26  LCDB · List 
(33816) 2000 AL_{42}  193  0.12  2−  Hungaria  E  2.54  14.90  LCDB · List 
(60949) 2000 JM_{61}  185.3  0.08  1  MBA (inner)  S  1.71  16.20  LCDB · List 
3436 Ibadinov  170  1.00  1  Koronis  S  8.58  12.50  LCDB · List 
(16558) 1991 VQ_{2}  170  1.00  2−  Phocaea  S  5.53  13.50  LCDB · List 
(104296) 2000 ET_{169}  167.3  0.09  1  MBA (outer)  C  5.77  14.92  LCDB · List 
(29019) 6095 PL  160  0.35  1+  MBA (outer)  C  8.82  14.00  LCDB · List 
44530 Horakova  160  2.68  1  MBA (inner)  S  7.13  13.10  LCDB · List 
(33108) 1997 YJ18  155  0.40  1+  Koronis  C  4.30  14.00  LCDB · List 
957 Camelia  150  0.30  1+  MBA (outer)  C  73.63  9.90  LCDB · List 
(77216) 2001 FO_{24}  150  1.00  1+  MBA (outer)  C  5.32  15.10  LCDB · List 
(79782) 1998 UN_{40}  150  0.20  1+  MBA (inner)  S  2.59  15.30  LCDB · List 
(57453) 2001 SL_{70}  148.7  0.08  1  Flora  S  2.16  15.50  LCDB · List 
(49586) 1999 CD_{138}  144  1.00  2−  MBA (outer)  C  9.67  13.80  LCDB · List 
(72823) 2001 HO_{3}  141.4  0.09  1  MBA (outer)  C  8.82  14.00  LCDB · List 
4147 Lennon  137  0.60  1  Vestian  S  7.46  13.00  LCDB · List 
4283 Stoffler  136  0.65  2−  Phocaea  S  7.99  12.70  LCDB · List 
(27005) 1998 DR_{35}  134  1.20  1+  MBA (inner)  S  3.92  14.40  LCDB · List 
(15241) 1989 ST_{3}  133.8  0.10  1  MBA (middle)  S  3.82  15.21  LCDB · List 
(200032) 2007 PU_{43}  132  1.80  1+  Jupiter trojan  C  14.64  12.90  LCDB · List 
19598 Luttrell  132  0.09  1  Flora  S  2.29  15.37  LCDB · List 
10390 Lenka  130  0.09  1  MBA (inner)  S  2.37  15.49  LCDB · List 
(496174) 2011 CQ_{4}  128  0.19  2−  NEO  S  0.62  18.40  LCDB · List 
(279121) 2009 OP_{22}  126.5  0.10  1  MBA (inner)  S  1.06  17.25  LCDB · List 
(134549) 1999 RN_{154}  124  0.55  2−  Flora  S  1.97  15.70  LCDB · List 
(56056) 1998 XP_{58}  121.1  0.06  1  Flora  S  2.70  15.01  LCDB · List 
(136992) 1998 SL_{45}  119  0.30  1+  MBA (inner)  S  2.36  15.50  LCDB · List 
(377993) 2006 RC_{39}  116  0.50  1  Flora  S  0.94  17.30  LCDB · List 
15132 Steigmeyer  115  0.62  1+  Vestian  S  2.15  15.70  LCDB · List 
2013 BE_{19}  115  0.40  2−  NEO  S  0.33  19.80  LCDB · MPC 
(52011) 2002 LW_{19}  114.5  0.08  1  MBA (inner)  S  2.45  15.42  LCDB · List 
(146975) 2002 NF_{26}  111.3  0.09  1  Baptistina  C  2.23  16.99  LCDB · List 
(39240) 2000 YZ_{69}  105  1.60  2−  MBA (outer)  C  7.34  14.40  LCDB · List 
3454 Lieske  105  0.73  2−  Flora  S  5.93  13.30  LCDB · List 
39420 Elizabethgaskell  105  1.60  2−  Hungaria  E  2.43  15.00  LCDB · List 
1581 Abanderada  102.8  0.10  2−  Themis  BCU  39.28  10.85  LCDB · List 
3981 Stodola  102.7  0.08  1  Themis  C  16.58  12.26  LCDB · List 
(98342) 2000 SD_{299}  102.5  0.09  1  Flora  S  1.17  16.82  LCDB · List 
21369 Gertfinger  100.9  0.09  1  MBA (outer)  C  8.68  14.04  LCDB · List 
4558 Janesick  100  0.11  1  Mars crosser  S  8.30  12.77  LCDB · List 
(32750) 1981 EG_{9}  100  0.60  1  MBA (outer)  C  7.68  14.30  LCDB · List 
(95711) 2003 AK  100  0.70  2−  Mars crosser  S  3.41  14.70  LCDB · List 
(90454) 2004 CV  100  0.30  2−  Flora  S  2.26  15.40  LCDB · List 
(80636) 2000 AV_{214}  100  3.00  1  MBA (inner)  S  1.42  16.60  LCDB · List 
See also
References
 ^ Data source, reference: Warner, B.D., Harris, A.W., Pravec, P. (2009). Icarus 202, 134–146.^{[2]} Updated 2016 September 6. See: www.MinorPlanet.info
 ^ ^{a} ^{b} ^{c} "LCDB: Summary Table Query Form". Asteroid Lightcurve Database (LCDB). Retrieved 1 June 2019.
 ^ ^{a} ^{b} Warner, Brian D.; Harris, Alan W.; Pravec, Petr (July 2009). "The asteroid lightcurve database". Icarus. 202 (1): 134–146. Bibcode:2009Icar..202..134W. doi:10.1016/j.icarus.2009.02.003. Retrieved 15 September 2016.
 ^ ^{a} ^{b} "About Light Curves". ALCDEF – Asteroid Lightcurve Photometry Database. Retrieved 23 March 2017.
 ^ "Readme – 4.1.2 U (Quality) Code". Asteroid Lightcurve Database (LCDB). Retrieved 27 May 2018.
 ^ "JPL SmallBody Database Browser: Definition/Description for SBDB Parameter/Field". Jet Propulsion Laboratory. Retrieved 14 September 2016.
 ^ ^{a} ^{b} "Readme – 3.1.1 Synodic Versus Sidereal Period". Asteroid Lightcurve Database (LCDB). Retrieved 27 May 2018.
External links
 Asteroid Lightcurve Database (LCDB), query form (info)
 Asteroids and comets rotation curves, CdR – Observatoire de Genève, Raoul Behrend
 Asteroid Lightcurve Photometry Database, Brian D. Warner
 JPL SmallBody Database Browser