To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

List of slow rotators (minor planets)

From Wikipedia, the free encyclopedia

This plot shows the distribution of rotation periods for 15,000 minor planets, plotted against their diameters. Most bodies have a period between 2 and 20 hours.[1][a]
This plot shows the distribution of rotation periods for 15,000 minor planets, plotted against their diameters. Most bodies have a period between 2 and 20 hours.[1][a]

This is a list of slow rotatorsminor planets that have an exceptionally long rotation period. This period, typically given in hours, and sometimes called rotation rate or spin rate, is a fundamental standard physical property for minor planets. In recent years, the periods of many thousands of bodies have been obtained from photometric and, to a lesser extent, radiometric observations.

The periods given in this list are sourced from the Light Curve Data Base (LCDB),[2] which contains lightcurve data for more than 15,000 bodies. Most minor planets have rotation periods between 2 and 20 hours.[1][3] As of 2019, a group of approximately 650 bodies, typically measuring 1–20 kilometers in diameter, have periods of more than 100 hours or 4​16 days. Among the § Slowest rotators, there are currently 15 bodies with a period longer than 1000 hours.[1] According to the Minor Planet Center, the sharp lower limit of approximately 2.2 hours is due to the fact that most smaller bodies are thought to be rubble piles – conglomerations of smaller pieces, loosely coalesced under the influence of gravity – that fly apart if the period is shorter than this limit. The few minor planets rotating faster than 2.2 hours, therefore, can not be merely held together by self-gravity, but must be formed of a contiguous solid.[3]

§ Potentially slow rotators have only an inaccurate period, estimated based on a fragmentary lightcurve and inconclusive measurement. They are listed separately from the more precise periods, which have a LCDB quality code, U, of 2 or 3 (unambiguous result). The periods for potentially slow rotators may be completely wrong (U = 1), have no complete and conclusive result (U = n.a.), or large error margins of more than 30% (U = 2−). A trailing plus sign (+) or minus sign (–) indicate slightly better or worse quality, respectively, than the unsigned value.[4]

As with orbital periods, a rotational period can be sidereal or synodic to describe a full rotation with respect to the fixed stars (sidereal) and Sun (synodic), respectively. In most cases, the periods given in this list are synodic, not sidereal.[5][6] However, in most cases the difference between these two different measures is not significant.[6] This is the case for all main-belt asteroids, which account for 97.5% of all minor planets.

YouTube Encyclopedic

  • 1/2
    Views:
    65 456
    1 116
  • ✪ Lec 19: Rotating Rigid Bodies, Inertia, and Axis Theorems | 8.01 Classical Mechanics (Walter Lewin)
  • ✪ 5.3 Pulsars [Astronomy: State of the Art]

Transcription

We have here, going back to rotating objects... I have an object here that has a certain velocity v, and it's going around with angular velocity omega, and a little later the angle has increased by an amount theta and then the velocity is here. We may now do something we haven't done before. We could give this object in this circle an acceleration. So we don't have to keep the speed constant. Now, v equals omega R, so that equals theta dot times R. And I can take now the first derivative of this. Then I get a tangential acceleration, which would be omega dot times R, which is theta double dot times R, and we call theta double dot... we call this alpha, and alpha is the angular acceleration which is in radians per second squared. Do not confuse ever the tangential acceleration, which is along the circumference, with a centripetal acceleration. The two are both there, of course. This is the one that makes the speed change along the circumference. If we compare our knowledge of the past of linear motion and we want to transfer it now to circular motion, then you can use all your equations from the past if you convert x to theta, v to omega and a to alpha. And the well-known equations that I'm sure you remember can then all be used. For instance, the equation x equals x zero plus v zero t plus one-half at squared simply becomes for circular motion theta equals theta zero plus omega zero t plus one-half alpha t squared-- it's that simple. Omega zero is then the angular velocity at time t equals zero, and theta zero is the angle at time t equals zero relative to some reference point. And the velocity was v zero plus at. That now becomes that the velocity goes to angular velocity omega equals omega zero plus alpha t. So there's really not much added in terms of remembering equations. If I have a rotating disk, I can ask myself the question now which we have never done before, what kind of kinetic energy, how much kinetic energy is there in a rotating disk? We only dealt with linear motions, with one-half mv squared, but we never considered rotating objects and the energy that they contain. So let's work on that a little. I have here a disk, and the center of the disk is C, and this disk is rotating with angular velocity omega that could change in time, and the disk has a mass m, and the disk has a radius R. And I want to know at this moment how much kinetic energy of rotation is stored in that disk. I take a little mass element here, m of i, and this radius equals r of i and the kinetic energy of that element i alone equals one-half m of i times v of i squared, and v of i is this velocity-- this angle is 90 degrees. This is v of i. Now, v equals omega R. That always holds for these rotating objects. And so I prefer to write this as one-half m of i omega squared r of i squared. The nice thing about writing it this way is that omega, the angular velocity, is the same for all points of the disk, whereas the velocity is not because the velocity of a point very close to the center is very low. The velocity here is very high, and so by going to omega, we don't have that problem anymore. So, what is now the kinetic energy of rotation of the disk, the entire disk? So we have to make a summation, and so that is omega squared over two times the sum of m of i r i squared over all these elements mi which each have their individual radii, r of i. And this, now, is what we call the moment of inertia, I. Don't confuse that with impulse; it has nothing to do with impulse. And this is moment of inertia... So the moment of inertia is the sum of mi ri squared. In... So this can also be written as one-half I, I put a C there-- you will see shortly why, because the moment of inertia depends upon which axis of rotation I choose-- times omega squared. And when you see that equation you say, "Hey, that looks quite similar to one-half mv squared." And so I add to this list now. If you go from linear motions to rotational motions, you should change the mass in your linear motion to the moment of inertia in your rotational motion, and then you get back to your one-half mv squared. You can see that. So we now have a way of calculating the kinetic energy of rotation provided that we know how to calculate the moment of inertia. Well, the moment of inertia is a boring job. It's no physics, it's pure math, and I'm not going to do that for you. It's some integral, and if the object is nicely symmetric, in general you can do that. In this case, for the disk which is rotating about an axis through the center and the axis-- that's important-- is perpendicular to the disk-- that's essential-- in that case the moment of inertia equals one-half m times R squared. And I don't even want you to remember this. There are tables in books, and you look these things up. I don't remember that. I may remember it for one day, but then, obviously, you forget that very quickly again. Needless to say, that the moment of inertia depends on what kind of object you have. Whether you have a disk or whether you have a sphere or whether you have a rod makes all the difference. And what also makes the difference-- about which axis you rotate the object. If we had a sphere, a solid sphere, then... So here you have a solid sphere, and I rotate it about an axis through its center. Then the moment of inertia, I happen to remember, equals two-fifths mR squared if R is the radius and m is the mass of the sphere. My research is in astrophysics. I deal with stars, and stars have rotational kinetic energy. We'll get back to that in a minute-- not in a minute but today-- and this is the one moment of inertia that I do remember. If you have a rod, and you let this rod rotate about an axis through the center, and this axis is perpendicular to the rod-- the latter is important, perpendicular to the rod-- and it is length l and it has mass m, then the moment of inertia-- which I looked up this morning; I would never remember that-- equals 1/12 ml squared. And all these moments of inertia you can find in tables in your book on page 309. So the moment of inertia for rotation about this axis of a solid disk is one-half mR squared. But it's completely different, the moment of inertia, if you rotated it about this axis. So you take the plane of the disk. Instead of rotating it this way, you rotate it now this way. You get a totally different moment of inertia. And most of those you can find in tables, but not all of them. Tables only go so far, and that is why I want to discuss with you two theorems which will help you to find moments of inertia in most cases. Suppose we have a rotating disk, and I will make you see the disk now with depth. So this is a disk, and we just discussed the rotation about the center of mass. And I call this axis l. And so it was rotating like this and was perpendicular to the disk. This is the moment of inertia. But now I'm going to drill a hole here, and I have here an axis l prime which is parallel to that one. And I'm going to force this object to rotate about that axis. I can always do that-- I can drill a hole have an axle, nicely frictionless bearing and I can force it to rotate about that. What now is the moment of inertia? If I know the moment of inertia, then I know how much rotational kinetic energy there is. That's one-half I omega squared. And now there is a theorem which I will not prove, but it's very easy to prove, and that is called the parallel axis theorem. And that says that the moment of inertia of rotation about l prime-- provided that l prime is parallel to l-- is the moment of inertia when the object rotates about an axis l through the center of mass plus the mass of the disk times the distance d squared. So this is the mass. And that's a very easy thing to apply, and that allows you now in many cases, to find the moment of inertia in situations which are not very symmetric. Imagine that you had to do this mathematically, that you actually had to do an integration of all these elements mi from this point on. That would be a complete headache. In fact, I wouldn't even know how to do that. So it's great. Once you have demonstrated, once you have proven that this parallel axis theorem works, then, of course, you can always use it to your advantage. Notice that the moment of inertia for rotation about this axis-- which is not through a center of mass-- is always larger than the one through the center. You see, you have this md squared; it's always larger. There is a second theorem which sometimes comes in handy, and that only works when you deal with very thin objects, and that is called the perpendicular axis theorem. If you have some kind of a crazy object-- which of course we will never give you; we'll always give you a square or we'll give you a disk... But it has to be a thin plate. Otherwise the perpendicular axis theorem doesn't work. And suppose I'm rotating it about an axis perpendicular to the blackboard through that point. I call that the z axis. It's sticking out to you. That's the positive z axis. I can draw now any xy axis where I please, at 90-degree angles, anywhere in the plane of the blackboard. So I pick one here, I call this x, and I pick one here and I call that y. So z is pointing towards you. Remember, I always choose a positive right-handed coordinate system. My x cross y is always in the direction of z. I always do that. And so you see that here, x cross y equals z. Now, you can rotate this thin plate about this axis. You can also rotate it about that axis. And you can also rotate it about the z axis. And then the perpendicular axis theorem, which your book proves in just a few lines, tells you that the moment of inertia for rotation about this axis here is the same as the moment of inertia for rotation about x plus the moment of inertia for rotation about the axis y. And this allows you to sometimes... in combination with the parallel axis theorem to find moments of inertia in case that you have thin plates which rotate about axes perpendicular to the plate or sometimes not even perpendicular. Sometimes you can use... if you know this and you know this, then you can find that. So both are useful, and in assignment 7 I'll give you a simple problem so that you can apply the perpendicular axis theorem. There are applications where energy is temporarily stored in a rotating disk, and we call those disks flywheels. And the rotational kinetic energy can be consumed, then, at a later time, so it's very economical. And this rotational kinetic energy can then be, perhaps, converted into electricity or in other forms of energy. And there are really remarkably inventive and intriguing ideas on how this can be done. Of course, whether it is practical depends always on dollars and cents and to what extent it is economically feasible. But I have always, even when I was a small boy... I remember when I was seven years, it already occurred to me that all this heat that is produced when cars slam their brakes-- all you're doing is you produce heat; you lose all that kinetic energy of your linear motion-- whether somehow that couldn't be used in a more effective way. And this is what I want to discuss with you now and see where we stand. This is actually being taken seriously by the Department of Energy. So I want to work out with you an example of a car which is in the mountains and which is going to go downhill. And the mountains are very dangerous-- zigzag roads-- and so he or she can only go very slowly. And the maximum speed that the person could use is at most ten miles per hour-- without killing him or herself-- which is about four meters per second. And so here is your car, and let's assume you start out with zero speed. And let's assume that the mass of the car-- we'll give it nice numbers-- is just 1,000 kilograms. And so you zigzag down this road. Let us assume that the height difference h-- let's give it a number, 500 meters... And you arrive here at point p. And you later have to go back up again. What is your kinetic energy when you reach point p? Well, you have a speed of four meters per second, and as you went down, you've been braking all the time. One way or another, you got rid of your speed and that's all burned up-- heat, you heat up the universe. So when you reach point p, your kinetic energy at that point p is simply one-half mv squared. m is the mass of the car, so that is 500 times 16-- v squared-- so that is 8,000 joules. Now compare this with the work that gravity did in bringing this car down. That work is mgh, and mgh is a staggering number. 1,000 times ten times 500-- that is five million joules! And all of that was converted to heat using the brakes. It actually even gives you also wear and tear on the brakes. So who needs it? Is there perhaps a way that you can salvage it or maybe not all of it, maybe part of it? And the answer is yes, there are ways. At least in principle there are ways. You can install a disk in your car, which I would call, then, a flywheel, And you can convert the gravitational potential energy. You can convert that to kinetic energy of rotation in your flywheel. And to show you that it is not completely absurd, I will put, actually, in some numbers. Suppose you had a disk in your car which had a radius of half a meter. That's not completely absurd. That's not beyond my imagination. That's a sizable disk. And I give it a modest mass-- so that the mass of the car is not going to be too high-- 200 kilograms. That's reasonable. That would be a steel plate only five centimeters thick, so that's quite reasonable. And the moment of inertia of this disk if I rotate it about an axis through the center perpendicular to the disk-- that moment of inertia, we know now, is one-half m... oh, we have a capital M-- R squared, and that equals 25. The units are kilograms, if you're interested, kilograms/meter squared. So we know the moment of inertia. Now, what we would like to do is we would like to convert all this gravitational potential energy into kinetic energy of that disk. If you think of a clever way that you can couple that-- people have succeeded in that-- then you really would like one-half I omega squared... You would really like that to be five times ten to the six joules. And so that immediately tells you what omega should be for that disk, and you find, then, if you put in your numbers, which is trivial... you find that omega is about 632 radians per second, so the frequency of the disk is 100 hertz, 100 revolutions per second. I don't think that that is particularly extravagant. So as you would come down the hill, you would not be braking by pushing on your brake, you would not be heating up your brakes, but you would somehow convert this energy into the rotating disk and that would slow you down. So the slowdown, the "braking" is now done because of a conversion from your linear speed-- which comes from gravitational potential energy-- to the rotation of the disk. And when you need that energy, you tap it. So you should also be able to get the rotational kinetic energy out and convert that again into forward motion. And if you could really do this, then you could go back uphill and you wouldn't have to use any fuel. All your five million joules can be consumed, then, in an ideal case, and you would not have to use any fuel. Now, you can ask yourself the question, is this system only useful in the mountains or could you also use this in a city? Well, of course you can use it in a city. You wouldn't be braking like this, then, but again, you would slow down by taking out kinetic energy of linear forward motion, dump that into kinetic energy of rotation of your flywheel and that would slow you down. And when the traffic light turns green, you convert it back-- rotational kinetic energy into linear kinetic energy-- and you keep going again. Now, of course, this is all easier said than done, but it is not complete fantasy. People have actually made some interesting studies, and I would like to show you at least one case that I am aware of, that I found on the Web, that shows you that United States Energy Department is taking this quite seriously. This view graph is also on the 801 home page. And so you see here the idea of mounting such a flywheel under the car here. And it has the location of the "flywheel energy management power plant." Wonderful word, isn't it? And here you see a close-up of this flywheel. I didn't get any numbers on it. I don't know which fraction of the energy can be stored in your flywheel, but it's an attempt. People are seriously thinking about it. And it may happen in the next decade that cars may come on the market whereby some of your energy, at least, can be salvaged. Instead of heating up the universe, use it yourself, which could be very economical. I have here a toy car-- I'll show it on TV first. And this toy car has a flywheel. Do you see it? That the flywheel itself is the wheel of the car, but the idea is there. In this case, I cannot convert linear motion into the flywheel. I could do that, but I'm going to do it in a reverse way. I'm going to give this flywheel a lot of kinetic energy of rotation, and you will see shortly how I do that. And then I will show you that that can be converted back into forward motion-- in this case, it's very easy because the flywheel itself is the wheel. So let me try to... power this car. I do that with this plastic... okay. So I'm going to put some energy into this wheel, into this flywheel, and then we'll see whether the car can use that to start moving. Great that my lecture notes were there. So, you see, it works. And, of course, if you could reverse that idea, that when the car... before it stops, get it back into the flywheel, then you have the idea that I was trying to get across. Very economical, and definitely that will happen sometime in the future. Flywheels are used more often than you may think. MIT, at the Magnet Lab, has two flywheels which are amazing. They have a radius, I think, of 2.4 meters-- that is correct-- and each one of those flywheels has a stunning mass of 85 tons, 85,000 kilograms... and they rotate at about six hertz. You can calculate the moment of inertia. They rotate about their center axis perpendicular to the plane. You know now what one-half I omega square is, and so you can calculate the kinetic energy of rotation. And that kinetic energy of rotation is, then, a whopping 200 million joules in each of those rotating flywheels. Now, they use this rotational kinetic energy to create very strong magnetic fields on a time scale as short as five seconds. So they convert mechanical energy of rotation to magnetic energy, which is not part of 801 so I will not go into how they do that. This is part of 802, and I'm sure all of you are looking forward to 802, and that's when you will see how you can convert mechanical energy into magnetic energy. We have already seen a demonstration in class whereby we converted mechanical energy when someone was rotating, into electric energy. I think that was you, wasn't it? And we got these light bulbs on. Well, you can also convert it into magnetic energy. And then when they have created these strong magnetic fields that they do their research with and when they want to get rid of them, they go the other way around and they dump that energy, that magnetic energy, back into the flywheels, who then start spinning again at six hertz. Needless to say that huge amount of rotational kinetic energy must be stored in planets and in stars, and I would like to spend quite some time on that. It's a very interesting subject. I will first discuss with you the sun and the earth and see how much rotational kinetic energy is stored in the earth and in the sun. This is also on the 801 home page, so don't copy this. Let's first look at the sun. We have the mass of the sun, we have the radius of the sun so you can calculate the moment of inertia of the sun. I have used my two-fifths mR squared, which is really a crude approximation, because the two-fifths m R squared for a solid sphere only holds if the mass is uniformly distributed throughout that sphere. With a star, that's not the case; not with the earth either, because the density is higher at the center. But this sort of gives you a crude idea. So we have there the moment of inertia, which is easy to calculate with that two-fifths mR squared, and I get the same for the earth. This is the radius of the earth, and you see the moment of inertia of the earth. Now I want to know how much kinetic energy of rotation these objects have. Well, the sun rotates about its axis in 26 days, the earth in one day, and so I finally convert everything to MKS units and I find these numbers for the rotational kinetic energy. Now, look at the number of the sun-- 1½ times ten to the 36th joules. Our great-grandfathers must have been puzzled about where the solar energy came from-- the heat and the light, where it came from. And conceivably it came from rotation. Maybe the sun is spinning down, is slowing down and maybe the energy that we get is nothing but rotational kinetic energy. If that were the case, however, since the sun produces four times ten to the 26th watts-- four times ten to the 26th joules-- per second, it would only last 125 years. So you can completely forget the idea that the energy from the sun that we now know, of course, is nuclear, but our great-grandparents didn't know that-- that the energy would be tapped from kinetic energy of rotation. Let's look at the earth. 2½ times ten to the 29th joules. Well, let me try something... some fantasy on you, some crazy, some ridiculous idea and I'm telling you first, it is ridiculous. Remember that the world consumption... Six billion people on earth consume about four times ten to the 20th joules every year. So if somehow... I thought if you could tap the rotational energy of the earth by slowing the earth down, maybe we could use it to satisfy the world energy consumption. Um, I wouldn't know how to do it, and it is, of course, complete fantasy. All you would have to do is slow the earth down by about... 2.4 seconds. After one year... So you slow it down. After one year, the day wouldn't last... Day and night wouldn't last 24 hours but only 2.4 seconds longer. But, of course, after a billion years, then, you would have consumed up all the rotational kinetic energy and then the earth would no longer be rotating. It is, of course, a crazy idea but sometimes it's cute to speculate about crazy ideas. There is an object which we call the Crab Pulsar. It is a neutron star and it is located in the Crab Nebula. The Crab Nebula is the result of a supernova explosion that went off in the year 1054, and during my next lecture I will talk a lot more about that. For now, I just want to concentrate on this neutron star alone. And so here you have the data on the Crab Pulsar. The mass of the Crab Pulsar is not too different from that of the sun. It's about 1½ times more. The radius is ridiculously small-- it's only ten kilometers. All that mass is compact in a ten-kilometer-radius sphere. It has ahorrendous density of ten to the 14th grams per cubic centimeter. So, of course, the moment of inertia is extremely modest compared to the sun, because the radius is so small and the moment of inertia goes with the radius squared. However, if you look at rotational kinetic energy, the situation is very different, because this neutron star rotates in 33 milliseconds about its axis. So it has a phenomenal angular velocity. And so if now you calculate one-half I omega squared, you get a fantastic amount of rotational kinetic energy. You get an amount which is more than a million times more than you have in the sun. And this object, this pulsar in the Crab Nebula is radiating copious amounts of x-rays, of gamma rays. There are jets coming out of ionized gas, and we are certain that all that energy that this object is producing comes from rotational kinetic energy. And I will give you convincing arguments why there is no doubt about that. If you take the Crab Pulsar and you calculate how much energy comes out in x-rays and gamma rays and everything that you can observe in astronomy, then you find that it has a power roughly of about six times ten to the 31st watts. It's a phenomenal amount if you compare that with the sun, by the way. The sun is only four times ten to the 26th watts. So the Crab Pulsar alone generates about 150,000 times more power than the sun. We know the period of the pulsar to a very high degree of accuracy. The period of rotation of the neutron star is 0.0335028583 seconds. That's what it is today. I called my radio astronomy friends yesterday and I asked them, "What is the rotation period of the neutron star in the Crab Nebula?" and this was the answer. Tomorrow, however, it is longer by 36.4 nanoseconds. So tomorrow, you have to add this. That means it's slowing down. The Crab Pulsar is slowing down. That means omega is going down. That means one-half I omega square is going down. And when you do your homework, which you should be able to do-- to compare the rotational kinetic energy today with the rotational kinetic energy tomorrow-- you will see that the loss of energy is six times ten to the 31st joules per second, which is exactly the power that we record in terms of x-rays, gamma rays and other forms of energy. So there's no question that in the case of this rotating neutron star, all the energy that it radiates is at the expense of rotational kinetic energy. It's a mind-boggling concept when you think of it. And if the neutron star in the Crab Nebula were to continue to lose rotational kinetic energy at exactly this rate, then it would come to a halt in about 1,000 years. Now I would like to show you a few slides, and I might as well cover this up so that we get it very dark in this room. I want to show you the Crab Nebula, and I think I will also show you the beautiful flywheels in the Magnet Lab. Now I need a flashlight. I need my laser pointer. I need a lot of stuff. Okay, there we go, so I'm going to make it dark. You ready for that? Okay, if I can get the first slide. What you see here are these flywheels at the Magnet Lab. These are the wheels that have a mass of 85 tons and that have a radius of 2.5 meters-- an incredible, ingenious device, and you can store in there 200 million joules, and you can dump it into magnetic energy and in five seconds dump it back into kinetic energy of rotation. It is an amazing accomplishment, by the way. And here you see the Crab Nebula. The Crab Nebula is at a distance from us of about 5,000 light-years. It is the remnant of a supernova explosion in the year 1054-- much more about that during my next lecture-- and what you see here is not stuff that is generated at this moment in time by the pulsar. This, by the way, is the pulsar, and the red filaments that you see here is material that was thrown off when the explosion occurred. The explosion, the supernova explosion throws the outer layers of the star with a huge speed-- some 10,000 kilometers per second-- into space, and that is what you are seeing. From here to here is about seven light-years to give you an idea of the size of this object. This pulsar alone, however, generates the... six times 31... watts. And we do know that it is this star that is the pulsar and we know that it is not that star. And the way that that was observed, that that was measured, is as follows. A stroboscopic picture, a stroboscopic exposure was made of the center portion of the Crab Nebula. And a stroboscopic picture means that you are using a shutter which opens and closes. In this case, you have to open and close it with exactly the same frequency as the rotation of the neutron star. This neutron star-- for reasons that is not well understood-- is blinking at us. It blinks at us at exactly the frequency of its rotation, 33 milliseconds. That means 30 hertz. Roughly 30 times per second you see the star become bright and then go dim again. If now you set your frequency of your shutter of your... in front of your photographic plate at exactly that frequency and you expose the photographic plate only when the star is bright, then you will see a very bright star when you develop your picture. If now you take another picture, expose it the same amount of time, but the shutter is open when the star is dim and you develop that picture, the star is dim. But the beauty is that all other stars in the vicinity, of course, will show up on both photographic plates with exactly the same strength because they are not blinking at you, since they don't blink at us with a period of 33 milliseconds. That is what you will see on the next slide, which is a stroboscopic exposure. This star is clearly not the pulsar as it is about equally bright on both exposures. This is not the pulsar, but this one is. You see, this one is missing here. And so this is beyond any question that we know exactly which the pulsar is. A very new observatory was launched only recently, and that is called the Chandra X-ray Observatory. And Chandra made a picture very recently of the Crab Nebula, of the pulsar, and that's what I want to show you now. It's on the Web, and I show you a picture that many of you probably haven't seen yet, which is the center part of the Crab Nebula, and the pulsar is located here. And all this is x-rays, nothing to do with optical light. This is all x-rays, and you see there is a huge nebula here around this pulsar which is about two light-years across, and all that energy in x-rays is all at the expense of rotational kinetic energy of the pulsar, which is quite amazing. And when this picture was made with Chandra X-ray Observatory, they discovered immediately that the pulsar also produces a jet. Maybe you can see that from where you are sitting. There is a jet coming out here, and with a little bit of imagination you can see this jet going out there. All that energy is at the expense of rotational kinetic energy. MIT has a big stake, by the way, in the Chandra Observatory, and not only MIT but Cambridge as a whole. The Center for Astrophysics and MIT are running the Chandra Science Center, from which all radio commands are given, which is here just across the street, a few blocks away. And many MIT scientists have dedicated the major part of their careers in this endeavor. And these are one of the wonderful results that have come out. All right, you now have five minutes left. You have a little more-- you have seven minutes left. I would appreciate it a lot if you fill out the questionnaire, because that's the only way we can get your feedback and we can make changes if you think these changes are necessary. So, see you Friday.

Contents

Slowest rotators

This list contains the slowest-rotating minor planets with periods of at least 1000 hours, or 41​23 days. See § Potentially slow rotators for minor planets with an insufficiently accurate period—that is, a LCDB quality code of less than 2.

# Minor planet designation Rotation period
(hours)
Δmag Quality
(U)
Orbit or family Spectral type Diameter
(km)
Abs. mag
(H)
Refs
1. (162058) 1997 AE12 1880 0.60 2   NEO S 0.78 17.90 LCDB  · List
2. 846 Lipperta 1641 0.30 2   Themis CBU: 52.41 10.26 LCDB  · List
3. 2440 Educatio 1561 0.80 2   Flora S 6.51 13.10 LCDB  · List
4. 2056 Nancy 1343 0.68 3− MBA (inner) S 10.30 12.30 LCDB  · List
5. 912 Maritima 1332 0.18 3− MBA (outer) C 82.14  9.30 LCDB  · List
6. 9165 Raup 1320 1.34 3− Hungaria S 4.62 13.60 LCDB  · List
7. 1235 Schorria 1265 1.40 3   Hungaria CX: 5.04 13.10 LCDB  · List
8. (50719) 2000 EG140 1256 0.42 2   Eunomia S 3.40 14.65 LCDB  · List
9. (75482) 1999 XC173 1234.2 0.69 2   Vestian S 2.96 15.01 LCDB  · List
10. 288 Glauke 1170 0.90 3   MBA (outer) S 32.24 10.00 LCDB  · List
11. (39546) 1992 DT5 1167.4 0.80 2   MBA (outer) C 5.34 15.09 LCDB  · List
12. 496 Gryphia 1072 1.25 3   Flora S 15.47 11.61 LCDB  · List
13. 4524 Barklajdetolli 1069 1.26 2   Flora S 7.13 12.90 LCDB  · List
14. 2675 Tolkien 1060 0.75 2+ Flora S 9.85 12.20 LCDB  · List
15. (219774) 2001 YY145 1007.7 0.86 2   MBA (inner) S 1.54 16.43 LCDB  · List

back to top WWC arrow up.png

Periods between 500 and 1000 hours

# Minor planet designation Rotation period
(hours)
Δmag Quality
(U)
Orbit or family Spectral type Diameter
(km)
Abs. mag
(H)
Refs
16. (38063) 1999 FH 990 0.55 2   Mars crosser S 3.92 14.40 LCDB  · List
17. (86106) 1999 RP113 975.1 0.74 2   Eos S 4.44 14.51 LCDB  · List
18. 14436 Morishita 972.8 0.82 2   MBA (inner) S 3.49 14.65 LCDB  · List
19. (87231) 2000 OB43 967.3 0.58 2   Eunomia S 2.94 14.97 LCDB  · List
20. (58651) 1997 WL42 938.2 0.47 2   MBA (inner) S 2.36 15.50 LCDB  · List
21. 9000 Hal 908 0.90 2+ Flora S 4.11 14.10 LCDB  · List
22. (42843) 1999 RV11 894 1.32 2   Phocaea S 3.49 14.50 LCDB  · List
23. 3233 Krisbarons 888 1.44 2   Flora S 6.51 13.10 LCDB  · List
24. (37586) 1991 BP2 887 0.96 2+ Phocaea S 5.53 13.50 LCDB  · List
25. 831 Stateira 861 0.64 3− Flora S 6.81 13.00 LCDB  · List
26. 2974 Holden 856 0.70 2+ Flora S 6.21 13.20 LCDB  · List
27. (391033) 2005 TR15 850 1.00 2   NEO S 0.45 19.10 LCDB  · List
28. (29733) 1999 BA4 849.2 0.74 2   Vestian S 3.88 14.42 LCDB  · List
29. 2672 Písek 831 0.90 2+ Eunomia S 9.60 12.40 LCDB  · List
30. 12867 Joeloic 813 0.71 2+ Flora S 4.94 13.70 LCDB  · List
31. 2862 Vavilov 800 0.40 2   Flora S 7.82 12.70 LCDB  · List
32. (22166) 2000 WX154 800 0.46 2   MBA (inner) S 4.61 15.02 LCDB  · List
33. 8109 Danielwilliam 790 0.60 2   Phocaea S 3.17 14.71 LCDB  · List
34. (47069) 1998 XC73 784.5 0.38 2   MBA (outer) C 10.06 13.72 LCDB  · List
35. 1663 van den Bos 740 0.80 3− Flora S 12.25 11.90 LCDB  · List
36. 4902 Thessandrus 738 0.60 2   Jupiter trojan C 61.04  9.80 LCDB  · List
37. (8615) 1979 MB2 731.3 1.16 2   MBA (inner) S 4.45 14.12 LCDB  · List
38. 35286 Takaoakihiro 724.1 0.93 2   Eunomia S 3.22 14.77 LCDB  · List
39. (16896) 1998 DS9 708 0.43 3− Phocaea S 6.06 13.30 LCDB  · List
40. (49671) 1999 RP46 700.1 0.68 2   Eos S 7.14 13.48 LCDB  · List
41. (249838) 2001 OR104 670.8 0.69 2   MBA (outer) C 3.65 15.91 LCDB  · List
42. 1479 Inkeri 660 1.30 2+ MBA (middle) XFU 17.52 11.90 LCDB  · List
43. 11774 Jerne 648.1 0.68 2   MBA (outer) C 8.09 14.19 LCDB  · List
44. (7352) 1994 CO 648 0.30 3− Jupiter trojan C 58.29  9.90 LCDB  · List
45. 1144 Oda 648 0.55 2+ Hilda D 57.65  9.90 LCDB  · List
46. (16276) 2000 JX61 646.7 0.62 2   MBA (middle) S 5.92 14.26 LCDB  · List
47. (119744) 2001 YN42 625 0.52 2+ MBA (inner) S 2.47 15.40 LCDB  · List
48. 8054 Brentano 623.8 0.46 2   Flora S 3.25 14.61 LCDB  · List
49. (12982) 1979 MS5 601.9 0.86 2   Vestian S 2.39 15.47 LCDB  · List
50. 19640 Ethanroth 600.3 0.62 2   MBA (outer) C 6.54 14.65 LCDB  · List
51. (37635) 1993 UJ1 600 0.80 3   Hungaria E 2.20 14.90 LCDB  · List
52. (10939) 1999 CJ19 587.8 0.61 2   Flora S 3.94 14.19 LCDB  · List
53. (218144) 2002 RL66 587 0.32 3− Mars crosser S 2.97 15.00 LCDB  · List
54. (88242) 2001 CK35 576 0.92 2   Hungaria E 1.36 16.25 LCDB  · List
55. 3448 Narbut 570.4 0.39 2   Flora S 5.69 13.39 LCDB  · List
56. (23958) 1998 VD30 562 0.45 2   Jupiter trojan C 50.77 10.20 LCDB  · List
57. 27810 Daveturner 546 0.43 2+ Hungaria E 3.35 14.30 LCDB  · List
58. 1042 Amazone 540 0.25 2   MBA (outer) C 73.59  9.90 LCDB  · List
59. (121293) 1999 RL182 539.6 0.52 2   MBA (outer) C 4.04 15.70 LCDB  · List
60. (230872) 2004 RG199 535.1 0.66 2   MBA (outer) C 2.73 16.55 LCDB  · List
61. (48376) 4044 T-3 535 1.31 2   Flora S 2.73 14.99 LCDB  · List
62. 23804 Haber 532.2 0.63 2   Vestian S 2.68 15.22 LCDB  · List
63. (96590) 1998 XB 520 1.00 3   NEO S 1.71 16.20 LCDB  · List
64. (283401) 2000 SV15 502 0.37 2   Jupiter trojan C 13.88 13.02 LCDB  · List
65. (9335) 1991 AA1 500.6 0.88 2   MBA (outer) C 11.33 13.46 LCDB  · List
66. 6498 Ko 500 0.60 2   Flora S 3.99 14.16 LCDB  · List
67. (90403) 2003 YE45 500 0.81 2   NEO S 0.90 17.60 LCDB  · List

back to top WWC arrow up.png

Periods of 400+ hours

# Minor planet designation Rotation period
(hours)
Δmag Quality
(U)
Orbit or family Spectral type Diameter
(km)
Abs. mag
(H)
Refs
68. (279208) 2009 UQ35 499.6 0.46 2   MBA (inner) S 1.01 17.33 LCDB  · List
69. 79316 Huangshan 493 0.62 2+ Hungaria E 2.54 14.90 LCDB  · List
70. 1220 Crocus 491.4 1.00 3   Eos S 15.79 11.76 LCDB  · List
71. 1256 Normannia 488.1 0.39 2   Hilda D 69.02 10.02 LCDB  · List
72. (6840) 1995 WW5 482.3 0.46 2   Nysa S 3.12 14.84 LCDB  · List
73. 2696 Magion 480 0.31 2   Phocaea S 10.06 12.20 LCDB  · List
74. 5171 Augustesen 480 0.80 3   Vestian S 6.50 13.30 LCDB  · List
75. 19204 Joshuatree 480 0.95 2+ Phocaea S 4.39 14.00 LCDB  · List
76. 20862 Jenngoedhart 479.3 1.08 2   Flora S 3.59 14.39 LCDB  · List
77. 2759 Idomeneus 479 0.27 3− Jupiter trojan C 60.90 10.00 LCDB  · List
78. (215442) 2002 MQ3 473 0.38 3   NEO S 0.59 18.50 LCDB  · List
79. (23123) 2000 AU57 467.3 0.57 2   Jupiter trojan C 23.00 11.92 LCDB  · List
80. (327749) 2006 TA69 463.7 0.83 2   Flora S 0.86 17.50 LCDB  · List
81. 6141 Durda 460 0.50 2+ Hungaria E 3.35 14.30 LCDB  · List
82. 6183 Viscome 453 0.90 3− Mars crosser S 5.41 13.70 LCDB  · List
83. 2013 US3 450 1.20 2   NEO S 0.16 21.30 LCDB  · MPC
84. (93955) 2000 WT183 449.5 0.62 2   MBA (outer) C 5.80 14.91 LCDB  · List
85. (66092) 1998 SD 448 0.42 2   Hungaria E 3.06 14.50 LCDB  · List
86. (98055) 2000 RR38 447.6 0.40 2   MBA (inner) S 2.36 15.50 LCDB  · List
87. (36103) 1999 RL116 446.5 0.39 2   MBA (outer) C 7.58 14.33 LCDB  · List
88. 11351 Leucus 445.7 0.70 3− Jupiter trojan C 42.07 10.70 LCDB  · List
89. 2747 Český Krumlov 438.7 0.63 2   MBA (outer) C 20.62 12.16 LCDB  · List
90. (213480) 2002 EV148 436.7 0.32 2   MBA (inner) S 1.17 17.02 LCDB  · List
91. 437 Rhodia 433.2 0.35 3− MBA (inner) S 14.46 10.71 LCDB  · List
92. 319 Leona 430 0.50 3   MBA (outer) C 68.01 10.10 LCDB  · List
93. (383702) 2007 TK436 427.4 0.60 2   MBA (outer) C 3.85 15.80 LCDB  · List
94. (122463) 2000 QP148 426 1.13 2   Mars crosser S 2.59 15.30 LCDB  · List
95. (463380) 2013 BY45 425 0.49 2   NEO S 0.45 19.10 LCDB  · List
96. 3571 Milanstefanik 421.1 0.65 2+ Hilda C 38.91 11.00 LCDB  · List
97. (27867) 1995 KF4 418.9 0.37 2   Eunomia S 5.25 13.71 LCDB  · List
98. 5641 McCleese 418 1.30 2   Hungaria A 3.67 14.10 LCDB  · List
99. 253 Mathilde 417.7 0.50 3   MBA (middle) C 57.87 10.30 LCDB  · List
100. 17030 Sierks 416.2 0.31 2   MBA (outer) C 10.57 13.61 LCDB  · List
101. 707 Steina 414 1.00 2+ Flora S 10.31 12.10 LCDB  · List
102. (87134) 2000 NS5 412.7 0.84 2   MBA (middle) S 3.61 15.33 LCDB  · List
103. 9584 Louchheim 410 0.30 2   MBA (inner) S 4.50 14.10 LCDB  · List
104. 3759 Piironen 409.8 0.56 2   Eunomia C 32.15 11.90 LCDB  · List
105. (221540) 2006 TG128 408.9 0.83 2   Nysa S 1.20 16.92 LCDB  · List
106. 10684 Babkina 404.7 0.74 2   Flora S 2.43 15.24 LCDB  · List

back to top WWC arrow up.png

Periods of 300+ hours

# Minor planet designation Rotation period
(hours)
Δmag Quality
(U)
Orbit or family Spectral type Diameter
(km)
Abs. mag
(H)
Refs
107. (223665) 2004 PH37 397.2 0.58 2   Eunomia S 1.59 16.30 LCDB  · List
108. 21432 Polingloh 393 0.73 2   Flora S 1.52 16.25 LCDB  · List
109. (76800) 2000 OQ35 392 1.40 3   Hungaria E 2.54 14.90 LCDB  · List
110. 22905 Liciniotoso 389.6 0.42 2   Flora S 2.50 15.18 LCDB  · List
111. (172537) 2003 UH27 386.9 0.62 2   Flora S 0.98 17.20 LCDB  · List
112. (108163) 2001 HA6 383.5 0.71 2   Eunomia S 3.01 14.92 LCDB  · List
113. (192309) 1993 TK26 383.3 0.80 2   MBA (outer) C 3.38 16.08 LCDB  · List
114. (31182) 1997 YZ3 380 0.90 2   Hungaria E 2.30 14.80 LCDB  · List
115. 10331 Peterbluhm 379 1.10 2   Hilda C 23.21 11.90 LCDB  · List
116. (252079) 2000 SY306 376 0.74 2   Flora S 0.94 17.31 LCDB  · List
117. (184616) 2005 RE11 375.4 0.86 2   Eos S 2.88 15.46 LCDB  · List
118. (13331) 1998 SU52 375 0.80 3− Jupiter trojan C 29.21 11.40 LCDB  · List
119. (15529) 2000 AA80 375 0.59 2   Jupiter trojan C 29.21 11.40 LCDB  · List
120. 1750 Eckert 375 0.87 3− Hungaria S 6.97 13.15 LCDB  · List
121. (18058) 1999 XY129 374.8 0.58 2   Jupiter trojan C 18.30 12.42 LCDB  · List
122. 5075 Goryachev 373 1.00 2   Nysa S 5.28 13.70 LCDB  · List
123. 8026 Johnmckay 372 1.00 3   Hungaria E 2.54 14.90 LCDB  · List
124. (106723) 2000 WE179 368.5 0.74 2   MBA (outer) C 4.29 15.57 LCDB  · List
125. 5851 Inagawa 367.5 0.90 3   Eunomia S 9.60 12.40 LCDB  · List
126. (14920) 1994 PE33 367.1 0.54 2   Flora S 3.53 14.43 LCDB  · List
127. (23615) 1996 FK12 367 0.23 2   Hungaria E 2.92 14.60 LCDB  · List
128. 8485 Satoru 362.8 0.58 2   MBA (outer) C 10.11 13.70 LCDB  · List
129. (114541) 2003 BP25 362.3 0.77 2   MBA (inner) S 2.54 15.34 LCDB  · List
130. (45752) 2000 JY70 362 0.48 2   Eos S 6.19 13.79 LCDB  · List
131. (325929) 2010 VB17 360.4 0.68 2   Flora S 0.65 18.09 LCDB  · List
132. (31399) 1998 YF30 359.1 0.40 2   Eunomia S 5.63 13.56 LCDB  · List
133. (22056) 2000 AU31 358 0.98 2+ Jupiter trojan C 24.30 11.80 LCDB  · List
134. (83374) 2001 SF9 356.4 0.48 2   MBA (outer) C 9.14 13.92 LCDB  · List
135. 4024 Ronan 356 1.10 3− Flora S 6.51 13.10 LCDB  · List
136. (252461) 2001 TS233 353.9 0.48 2   MBA (outer) C 2.81 16.49 LCDB  · List
137. 10374 Etampes 353 0.23 2   Flora S 4.09 14.11 LCDB  · List
138. (123104) 2000 SV348 351.9 0.42 2   MBA (middle) S 3.42 15.44 LCDB  · List
139. 630 Euphemia 350 0.45 2   Eunomia S 17.14 11.10 LCDB  · List
140. (31076) 1996 XH1 350 0.17 2   Hungaria E 1.93 15.50 LCDB  · List
141. (105654) 2000 SX26 348.7 0.70 2   Jupiter trojan C 11.67 13.39 LCDB  · List
142. (26083) 1981 EJ11 347 0.34 2+ Nysa S 2.77 15.10 LCDB  · List
143. (122733) 2000 SK47 346.9 0.26 2   Jupiter trojan C 14.56 12.91 LCDB  · List
144. (9807) 1997 SJ4 346 0.43 2   Jupiter trojan C 30.59 11.30 LCDB  · List
145. 2487 Juhani 344.6 1.03 2   MBA (inner) S 7.13 13.10 LCDB  · List
146. (24471) 2000 SH313 344.1 0.75 2   Jupiter trojan C 27.20 11.56 LCDB  · List
147. (43807) 1991 RC11 337.8 0.18 2   MBA (outer) C 12.30 13.28 LCDB  · List
148. 4962 Vecherka 336 1.08 2   Eunomia S 10.06 12.30 LCDB  · List
149. 7430 Kogure 335.9 0.57 2   MBA (inner) S 7.82 12.90 LCDB  · List
150. (28857) 2000 JE59 335.5 0.54 2   Eunomia S 3.37 14.67 LCDB  · List
151. 10551 Göteborg 335.3 0.70 2   Eos S 11.53 12.44 LCDB  · List
152. 8942 Takagi 332.2 0.44 2   MBA (outer) C 6.91 14.53 LCDB  · List
153. (61750) 2000 QD157 331.6 0.84 2   MBA (middle) S 3.05 15.69 LCDB  · List
154. (51888) 2001 QZ17 331 0.39 2+ Hilda C 13.98 13.00 LCDB  · List
155. (213835) 2003 QZ110 330.4 0.55 2   Flora S 0.73 17.84 LCDB  · List
156. 12577 Samra 329.2 0.96 2   MBA (outer) C 5.72 14.94 LCDB  · List
157. (256357) 2006 XH57 325.1 0.74 2   MBA (inner) S 1.50 16.48 LCDB  · List
158. (31177) 1997 XH11 323.4 0.49 2   Eunomia S 4.43 14.08 LCDB  · List
159. (332190) 2006 BR277 321.6 0.91 2   MBA (outer) C 2.31 16.91 LCDB  · List
160. (16917) 1998 FB29 321.5 0.69 2   Koronis S 4.63 13.84 LCDB  · List
161. 3527 McCord 321 0.44 2   Flora S 7.82 12.70 LCDB  · List
162. (50647) 2000 EN88 320 0.88 2   MBA (outer) C 8.76 14.02 LCDB  · List
163. 341 California 318 0.92 3   Flora S 14.67 10.55 LCDB  · List
164. 16879 Campai 314.2 0.68 2   MBA (outer) C 10.61 13.60 LCDB  · List
165. 14040 Andrejka 310 0.95 2   Flora S 2.26 15.40 LCDB  · List
166. (26977) 1997 US3 309.7 0.92 2   Eunomia S 5.44 13.63 LCDB  · List
167. (87892) 2000 SS292 309.7 0.82 2   MBA (outer) C 7.26 14.42 LCDB  · List
168. (21805) 1999 TQ9 309.3 0.40 2   Themis C 7.38 14.02 LCDB  · List
169. 1807 Slovakia 308.6 1.10 3   MBA (inner) S 9.84 12.40 LCDB  · List
170. (84631) 2002 VW51 308.1 0.54 2   MBA (inner) S 2.22 15.63 LCDB  · List
171. 8807 Schenk 307.6 0.44 2   MBA (inner) S 4.17 14.26 LCDB  · List
172. (26876) 1994 CR14 306.7 0.54 2   Eos S 6.07 13.84 LCDB  · List
173. (326366) 2000 WV21 306.7 0.72 2   MBA (middle) S 2.06 16.55 LCDB  · List
174. 79360 Sila–Nunam 300.2 0.15 2   TNO C 330.77  5.52 LCDB  · List

back to top WWC arrow up.png

Periods of 200+ hours

# Minor planet designation Rotation period
(hours)
Δmag Quality
(U)
Orbit or family Spectral type Diameter
(km)
Abs. mag
(H)
Refs
175. 21723 Yinyinwu 297.9 0.47 2   MBA (outer) C 6.81 14.56 LCDB  · List
176. (185492) 2007 HA8 295.4 0.67 2   Jupiter trojan C 13.60 13.06 LCDB  · List
177. 11780 Thunder Bay 295 0.70 3   MBA (inner) S 7.13 13.10 LCDB  · List
178. (183300) 2002 UH19 294.8 0.64 2   MBA (inner) S 1.09 17.17 LCDB  · List
179. (239303) 2007 PB43 292.1 0.92 2   MBA (outer) C 4.03 15.70 LCDB  · List
180. 1506 Xosa 292 0.70 2+ MBA (inner) S 11.83 12.00 LCDB  · List
181. 470 Kilia 290 0.26 2   Vestian S 26.39 10.07 LCDB  · List
182. 2018 XV 290 0.28 2   NEO S 0.24 20.44 LCDB  · MPC
183. (17847) 1998 HQ115 289.8 0.64 2   MBA (middle) S 5.31 14.49 LCDB  · List
184. (69026) 2002 VL93 288.1 0.63 2   MBA (inner) S 2.95 15.01 LCDB  · List
185. (128648) 2004 RT42 287.5 0.51 2   MBA (outer) C 4.35 15.53 LCDB  · List
186. 4459 Nusamaibashi 287.5 0.66 2   Flora S 3.91 14.21 LCDB  · List
187. (14774) 4845 T-1 287.4 0.50 2   MBA (outer) C 11.05 13.51 LCDB  · List
188. (98081) 2000 RF67 287.3 0.84 2   MBA (inner) S 3.41 14.70 LCDB  · List
189. (34045) 2000 OD34 287.3 0.23 2   MBA (inner) S 3.44 14.68 LCDB  · List
190. (163899) 2003 SD220 285 2.20 2+ NEO S 1.08 17.20 LCDB  · List
191. (225561) 2000 SB372 281.6 0.55 2   MBA (middle) S 2.00 16.61 LCDB  · List
192. 3635 Kreutz 280 0.25 2+ Hungaria S 3.41 14.70 LCDB  · List
193. (35697) 1999 CG104 277.6 0.92 2   Flora S 2.85 14.89 LCDB  · List
194. (15658) 1265 T-2 277.4 0.49 2   MBA (inner) S 2.34 15.52 LCDB  · List
195. (32539) 2001 PD59 276.3 0.67 2   MBA (outer) C 7.72 14.29 LCDB  · List
196. 4142 Dersu-Uzala 276 0.60 2   Hungaria S 7.13 13.10 LCDB  · List
197. (7183) 1991 RE16 275.8 0.46 2   Eos S 10.93 12.56 LCDB  · List
198. (16843) 1997 XX3 275 0.41 2   Hilda C 21.16 12.10 LCDB  · List
199. (67175) 2000 BA19 275 0.25 2+ Hungaria E 2.54 14.90 LCDB  · List
200. (16819) 1997 VW 274.9 0.50 2   MBA (middle) S 9.09 13.32 LCDB  · List
201. 10404 McCall 274.9 0.84 2   MBA (outer) C 7.05 14.49 LCDB  · List
202. 2870 Haupt 274 0.60 3− Erigone C 14.64 12.90 LCDB  · List
203. 2554 Skiff 273 0.90 2   Flora S 7.82 12.70 LCDB  · List
204. 299 Thora 272.9 0.50 3− MBA (inner) S 17.11 11.30 LCDB  · List
205. 20796 Philipmunoz 272.8 0.46 2   Koronis S 3.36 14.53 LCDB  · List
206. 3945 Gerasimenko 272.3 0.68 2   MBA (outer) C 14.80 12.88 LCDB  · List
207. 2576 Yesenin 272 0.34 2   MBA (outer) C 25.86 11.66 LCDB  · List
208. (24466) 2000 SC156 271.9 0.63 2   MBA (outer) C 9.15 13.92 LCDB  · List
209. 9323 Hirohisasato 269.2 0.53 2   Erigone C 5.23 15.14 LCDB  · List
210. (42195) 2001 DO17 268.8 0.92 2   MBA (outer) C 12.11 13.31 LCDB  · List
211. (332019) 2005 NP122 268.6 0.41 2   Hilda C 4.95 15.26 LCDB  · List
212. 10476 Los Molinos 267.9 0.33 2   MBA (inner) S 2.96 15.01 LCDB  · List
213. (24357) 2000 AC115 264 0.39 2+ Jupiter trojan C 25.44 11.70 LCDB  · List
214. 2010 WG9 263.8 0.14 2   TNO C 91.94  8.30 LCDB  · MPC
215. (28552) 2000 EY38 263.2 0.30 2   MBA (middle) S 5.54 14.40 LCDB  · List
216. (12808) 1996 AF1 263.1 0.30 2   MBA (inner) S 6.21 13.40 LCDB  · List
217. (147560) 2004 FN25 261.9 0.86 2   Eunomia S 1.71 16.15 LCDB  · List
218. (149106) 2002 CD206 261.2 0.87 2   MBA (outer) C 3.78 15.84 LCDB  · List
219. (65223) 2002 EU34 260 0.44 2+ Jupiter trojan C 18.43 12.40 LCDB  · List
220. (183581) 2003 SY84 260 0.87 2   Mars crosser S 2.97 15.00 LCDB  · List
221. (29231) 1992 EG4 259.5 0.85 2   MBA (outer) C 6.11 14.80 LCDB  · List
222. (226828) 2004 RR321 259.2 0.90 2   MBA (outer) C 3.76 15.85 LCDB  · List
223. 1447 Utra 257 0.63 2   MBA (inner) S 13.58 11.70 LCDB  · List
224. (161738) 2006 SD126 256.4 0.61 2   MBA (inner) S 1.96 15.90 LCDB  · List
225. 1573 Väisälä 252 0.76 2   Phocaea S 9.77 12.30 LCDB  · List
226. (119745) 2001 YU44 251.3 0.30 2   MBA (inner) S 2.44 15.43 LCDB  · List
227. (51238) 2000 JT34 250.6 0.42 2   MBA (outer) C 9.59 13.82 LCDB  · List
228. 6169 Sashakrot 250.1 0.39 2   MBA (outer) C 12.22 13.29 LCDB  · List
229. 824 Anastasia 250 1.20 3− MBA (outer) S 34.14 10.41 LCDB  · List
230. 6271 Farmer 250 0.22 2   Hungaria E 4.62 13.60 LCDB  · List
231. (24107) 1999 VS19 249 0.31 2   MBA (outer) C 9.37 13.87 LCDB  · List
232. 7509 Gamzatov 249 0.75 3− Flora S 5.17 13.60 LCDB  · List
233. (39705) 1996 TO18 247.2 0.39 2   Flora S 2.14 15.52 LCDB  · List
234. (128906) 2004 TR34 247 0.58 2   Themis C 3.33 15.75 LCDB  · List
235. (258476) 2002 AN13 247 0.75 2   MBA (outer) C 2.10 17.12 LCDB  · List
236. 19034 Santorini 247 0.43 2   Hilda C 14.64 12.90 LCDB  · List
237. (41039) 1999 UX56 246.8 0.82 2   MBA (outer) C 4.36 15.53 LCDB  · List
238. (13854) 1999 XX104 246.7 0.79 2   MBA (inner) S 2.19 15.66 LCDB  · List
239. (144974) 2005 EH125 246.7 0.73 2   Flora S 0.91 17.38 LCDB  · List
240. (83958) 2001 XA36 246.1 0.87 2   MBA (outer) C 5.03 15.22 LCDB  · List
241. 10019 Wesleyfraser 245.1 0.43 2   Themis C 6.65 14.25 LCDB  · List
242. (225930) 2002 AL161 241.8 0.45 2   MBA (inner) S 1.26 16.86 LCDB  · List
243. 76272 De Jong 241.4 0.83 2   MBA (outer) C 5.65 14.97 LCDB  · List
244. (17127) 1999 JE69 240.7 0.85 2   Eunomia S 4.35 14.12 LCDB  · List
245. 10415 Mali Lošinj 240.5 0.48 2   MBA (outer) C 18.77 12.36 LCDB  · List
246. (45672) 2000 EE109 240.3 0.59 2   MBA (outer) C 8.70 14.03 LCDB  · List
247. 821 Fanny 236.6 0.28 3− MBA (outer) C 23.86 11.84 LCDB  · List
248. 2772 Dugan 235 1.14 2+ MBA (inner) B 4.34 14.18 LCDB  · List
249. (115453) 2003 TL11 234.6 0.63 2   MBA (outer) C 5.08 15.20 LCDB  · List
250. (369984) 1998 QR52 234 0.88 3   NEO S 0.46 19.07 LCDB  · List
251. 3033 Holbaek 233.3 1.20 3− Flora S 7.82 12.70 LCDB  · List
252. (198582) 2004 YT13 233.1 0.95 2   MBA (outer) C 3.65 15.92 LCDB  · List
253. 5048 Moriarty 232.9 0.69 2   MBA (middle) S 8.12 13.57 LCDB  · List
254. 8449 Maslovets 230.7 0.65 2   MBA (outer) C 14.64 12.90 LCDB  · List
255. (48707) 1996 KR1 230 0.75 3− Hungaria E 2.02 15.40 LCDB  · List
256. (95355) 2002 CQ141 229.9 0.27 2   MBA (outer) C 5.33 15.10 LCDB  · List
257. (131381) 2001 KU39 227.4 0.77 2   MBA (outer) C 6.98 14.51 LCDB  · List
258. (114439) 2003 AL13 227 0.85 2   MBA (inner) S 1.82 16.06 LCDB  · List
259. 3691 Bede 226.8 0.50 2   NEO X 1.83 15.22 LCDB  · List
260. 9969 Braille 226.4 0.90 2   Mars crosser Q 1.64 16.40 LCDB  · List
261. (157900) 1999 TW108 225.5 0.68 2   MBA (outer) C 3.63 15.93 LCDB  · List
262. (78237) 2002 OL20 223.7 0.61 2   Eos S 2.76 15.55 LCDB  · List
263. (39796) 1997 TD 223.5 0.92 2   NEO S 2.15 15.70 LCDB  · List
264. (18899) 2000 JQ2 222 0.13 2+ Mars crosser S 3.26 14.80 LCDB  · List
265. (442742) 2012 WP3 221 0.30 2+ NEO S 0.90 17.60 LCDB  · List
266. (49642) 1999 JK26 220 0.67 2   MBA (outer) C 8.04 14.20 LCDB  · List
267. 65637 Tsniimash 220 0.90 3   Hungaria E 3.35 14.30 LCDB  · List
268. (40501) 1999 RM82 217.9 0.59 2   MBA (outer) C 4.66 15.39 LCDB  · List
269. (16353) 1974 WB 216.6 0.43 2   Eunomia S 2.93 14.98 LCDB  · List
270. 18699 Quigley 216.5 0.93 2   MBA (outer) C 5.87 14.88 LCDB  · List
271. (38071) 1999 GU3 216 1.50 3   NEO S 0.36 19.60 LCDB  · List
272. (114556) 2003 BR50 213.9 0.60 2   Eunomia S 2.14 15.66 LCDB  · List
273. 10001 Palermo 213.4 0.97 2   Vestian S 4.31 14.19 LCDB  · List
274. (8394) 1993 TM12 212.8 0.53 2   Flora S 3.16 14.67 LCDB  · List
275. 20394 Fatou 212.5 0.62 2   MBA (outer) C 8.25 14.15 LCDB  · List
276. 1183 Jutta 212.5 0.10 2   MBA (inner) S 17.83 12.40 LCDB  · List
277. (33736) 1999 NY36 211 0.40 2   MBA (outer) C 10.13 13.70 LCDB  · List
278. 1839 Ragazza 210.9 0.99 2+ MBA (outer) C 22.16 12.00 LCDB  · List
279. 1244 Deira 210.6 0.50 2   MBA (inner) S 30.89 11.50 LCDB  · List
280. (28876) 2000 KL31 210.6 0.41 2   MBA (outer) C 10.06 13.72 LCDB  · List
281. (28497) 2000 CJ69 210.4 0.87 2   MBA (inner) S 1.77 16.13 LCDB  · List
282. (109587) 2001 QJ277 208.4 0.54 2   Eos S 3.90 14.80 LCDB  · List
283. (7181) 1991 PH12 206.7 0.50 2   MBA (outer) C 14.16 12.97 LCDB  · List
284. (86666) 2000 FL10 206 0.85 2   NEO S 1.24 16.90 LCDB  · List
285. 2014 PL51 205 0.43 2   NEO S 0.25 20.40 LCDB  · MPC
286. (108892) 2001 PM2 204.8 0.86 2   MBA (outer) C 5.19 15.15 LCDB  · List
287. (91851) 1999 UA8 204.2 0.87 2   MBA (outer) C 5.20 15.15 LCDB  · List
288. (220239) 2002 XG15 204.1 0.28 2   MBA (outer) C 3.91 15.77 LCDB  · List
289. (33341) 1998 WA5 204 0.57 3− Hungaria E 2.43 15.00 LCDB  · List
290. (21206) 1994 PT28 203.8 0.85 2   MBA (outer) C 5.88 14.88 LCDB  · List
291. (20900) 2000 XW4 203.8 0.21 2   MBA (outer) C 9.66 13.80 LCDB  · List
292. (158553) 2002 JS1 203.6 0.73 2   MBA (outer) C 3.77 15.84 LCDB  · List
293. (9559) 1987 DH6 203.3 0.63 2   MBA (middle) S 9.19 13.30 LCDB  · List
294. (175809) 1999 RU182 202.1 0.82 2   Flora S 0.97 17.25 LCDB  · List
295. 9340 Williamholden 202.1 0.86 2   Themis C 8.91 13.61 LCDB  · List
296. 408 Fama 202.1 0.58 3   MBA (outer) C 41.09  9.30 LCDB  · List
297. 950 Ahrensa 202 0.40 3   Phocaea S 15.27 11.20 LCDB  · List
298. 3353 Jarvis 202 0.50 2+ Hungaria C 9.70 13.70 LCDB  · List
299. (197309) 2003 WS140 200.7 0.41 2   MBA (outer) C 3.77 15.84 LCDB  · List
300. (65407) 2002 RP120 200 0.60 2   Comet-like orbit C 14.60 12.30 LCDB  · List
301. 703 Noëmi 200 0.78 2   Flora S 8.58 12.50 LCDB  · List
302. 2750 Loviisa 200 0.80 2   Flora S 6.21 13.20 LCDB  · List
303. 2001 EC16 200 2   NEO S 0.15 22.30 LCDB  · MPC

back to top WWC arrow up.png

Periods of 100+ hours

# Minor planet designation Rotation period
(hours)
Δmag Quality
(U)
Orbit or family Spectral type Diameter
(km)
Abs. mag
(H)
Refs
304. (138691) 2000 SP57 199.1 0.49 2   MBA (outer) C 6.39 14.70 LCDB  · List
305. 3833 Calingasta 199 1.20 3   Mars crosser C 2.59 15.30 LCDB  · List
306. (332841) 2010 EA6 198.7 0.74 2   MBA (outer) C 2.62 16.64 LCDB  · List
307. (91599) 1999 TQ13 198.3 0.61 2   MBA (outer) C 5.21 15.14 LCDB  · List
308. 6734 Benzenberg 196.7 0.41 2   Eos S 15.51 11.80 LCDB  · List
309. (5747) 1991 CO3 196.5 0.71 2+ Phocaea S 8.13 12.50 LCDB  · List
310. (104182) 2000 EB96 195.8 0.71 2   Vestian S 1.61 16.33 LCDB  · List
311. (38701) 2000 QB66 195.1 0.48 2   Hilda C 18.12 12.44 LCDB  · List
312. (39596) 1993 QZ8 195.1 0.38 2   Flora S 1.57 16.19 LCDB  · List
313. (374702) 2006 RJ62 194.9 0.95 2   MBA (inner) S 0.58 18.57 LCDB  · List
314. 9054 Hippocastanum 193.6 0.38 2   Eunomia S 5.33 13.68 LCDB  · List
315. (41443) 2000 JD73 193.1 0.59 2   MBA (inner) S 2.85 15.09 LCDB  · List
316. (124032) 2001 FN126 192.3 0.85 2   MBA (outer) C 5.15 15.17 LCDB  · List
317. (229567) 2006 AR33 192.2 0.63 2   MBA (middle) S 2.11 16.49 LCDB  · List
318. 3064 Zimmer 190.5 0.70 2   Nysa S 4.74 13.93 LCDB  · List
319. (109204) 2001 QE81 190.1 0.71 2   MBA (outer) C 5.83 14.90 LCDB  · List
320. (29890) 1999 GH37 189.6 0.59 2   MBA (outer) C 9.63 13.81 LCDB  · List
321. (13144) 1995 BJ 189 0.81 2   MBA (outer) C 7.70 13.40 LCDB  · List
322. (92287) 2000 EX14 188.9 0.40 2   Hilda C 9.29 13.89 LCDB  · List
323. (37106) 2000 UC101 188.5 0.69 2   Flora S 2.48 15.19 LCDB  · List
324. (20100) 1994 XM 188.4 0.83 2   Themis C 5.54 14.64 LCDB  · List
325. (69653) 1998 FT101 188 0.32 2   Flora S 2.41 15.26 LCDB  · List
326. 1278 Kenya 188 0.75 3   MBA (inner) S 20.56 10.80 LCDB  · List
327. (144881) 2004 RM99 187.6 0.67 2   MBA (outer) C 4.22 15.60 LCDB  · List
328. 28680 Sandralitvin 187.4 0.56 2   MBA (inner) S 2.21 15.65 LCDB  · List
329. (183460) 2003 BT52 187.1 0.48 2   MBA (outer) C 3.71 15.88 LCDB  · List
330. 3345 Tarkovskij 187 0.70 3− MBA (inner) C 24.15 12.00 LCDB  · List
331. (152434) 2005 UV438 187 0.40 2   MBA (outer) C 4.55 15.44 LCDB  · List
332. (69420) 1995 YA1 186.9 0.70 2   MBA (inner) S 2.45 15.42 LCDB  · List
333. (18892) 2000 ET137 186.8 0.70 2   Eunomia S 4.26 14.16 LCDB  · List
334. (11737) 1998 QL24 184.7 0.25 2   MBA (inner) S 4.27 14.22 LCDB  · List
335. 20371 Ekladyous 184.4 0.54 2   MBA (outer) C 5.99 14.84 LCDB  · List
336. (20050) 1993 FO21 184.3 0.20 2   MBA (outer) C 5.31 15.10 LCDB  · List
337. (153144) 2000 SY230 183.8 0.66 2   MBA (middle) S 2.09 16.51 LCDB  · List
338. (266312) 2007 CY37 183.5 0.53 2   Eunomia S 1.57 16.33 LCDB  · List
339. (247388) 2001 YA122 183.5 0.62 2   MBA (outer) C 3.61 15.94 LCDB  · List
340. 9900 Llull 183.3 0.88 2   MBA (inner) S 4.30 14.20 LCDB  · List
341. (375904) 2009 VJ105 183.2 0.73 2   MBA (inner) S 1.28 16.84 LCDB  · List
342. 5202 Charleseliot 183 0.58 2   MBA (inner) S 9.53 13.37 LCDB  · List
343. (13384) 1998 XG79 182.2 0.82 2   MBA (outer) C 14.80 12.88 LCDB  · List
344. (190208) 2006 AQ 182 0.25 3− NEO S 0.71 18.10 LCDB  · List
345. (26198) 1997 GJ13 181.1 0.39 2   MBA (inner) S 2.36 15.50 LCDB  · List
346. (208173) 2000 QM24 180.6 0.82 2   MBA (outer) C 5.83 14.90 LCDB  · List
347. (225534) 2000 SX25 180.4 0.64 2   Eunomia S 1.51 16.42 LCDB  · List
348. (76786) 2000 LT9 180.1 0.78 2   Themis C 7.11 14.10 LCDB  · List
349. (253106) 2002 UR3 180 0.36 2   NEO S 1.42 16.60 LCDB  · List
350. (28294) 1999 CS59 179.8 0.56 2   MBA (outer) C 8.94 13.97 LCDB  · List
351. 16064 Davidharvey 178.5 0.70 2   NEO C 4.10 16.56 LCDB  · List
352. (47330) 1999 XQ31 178.1 0.80 2   MBA (outer) C 6.83 14.56 LCDB  · List
353. 4181 Kivi 178 0.77 2   Eunomia S 9.17 12.50 LCDB  · List
354. 641 Agnes 178 0.55 3   Flora S 8.81 12.64 LCDB  · List
355. (20231) 1997 YK 178 0.70 2   Hungaria E 3.85 14.00 LCDB  · List
356. (186865) 2004 HO24 177.8 0.54 2   MBA (middle) S 2.58 16.06 LCDB  · List
357. (277373) 2005 UD20 177.6 0.95 2   MBA (outer) C 3.42 16.06 LCDB  · List
358. (22712) 1998 RF78 177.1 0.58 2   MBA (outer) C 10.00 13.73 LCDB  · List
359. 6236 Mallard 176.3 0.83 2   Themis C 8.36 13.75 LCDB  · List
360. 4179 Toutatis 176 1.46 3   NEO S 2.45 15.30 LCDB  · List
361. 4002 Shinagawa 175 0.95 3− MBA (inner) S 13.58 11.70 LCDB  · List
362. (45109) 1999 XZ76 174.9 0.60 2   MBA (outer) C 7.97 14.22 LCDB  · List
363. 23061 Blueglass 174.6 0.51 2   Themis C 5.87 14.52 LCDB  · List
364. 16421 Roadrunner 174 1.25 3   Hungaria E 3.20 14.40 LCDB  · List
365. (12424) 1995 VM 173.8 1.05 2   Eunomia S 5.64 13.56 LCDB  · List
366. 3123 Dunham 172.5 0.73 2   Nysa S 5.68 13.54 LCDB  · List
367. (30591) 2001 QG10 172.4 0.83 2   MBA (middle) S 4.24 14.98 LCDB  · List
368. 3679 Condruses 172 1.30 2+ Flora S 5.41 13.50 LCDB  · List
369. (348519) 2005 UK53 171.5 0.67 2   MBA (outer) C 3.08 16.28 LCDB  · List
370. (130809) 2000 UJ5 170.9 0.71 2   MBA (inner) S 1.43 16.59 LCDB  · List
371. (39036) 2000 UQ78 170.4 0.81 2   Flora S 1.61 16.14 LCDB  · List
372. 9074 Yosukeyoshida 170 1.03 2   Erigone C 6.76 14.58 LCDB  · List
373. 15861 Ispahan 169.5 0.33 2   MBA (outer) C 14.34 12.94 LCDB  · List
374. (38999) 2000 UV26 169.1 0.75 2   Eunomia S 4.16 14.22 LCDB  · List
375. (248098) 2004 RG85 167.8 0.61 2   MBA (outer) C 4.28 15.57 LCDB  · List
376. 1606 Jekhovsky 165.9 0.31 2   MBA (middle) C 15.47 12.17 LCDB  · List
377. (274026) 2007 RT29 164.4 0.51 2   MBA (outer) C 3.92 15.76 LCDB  · List
378. 460 Scania 164.1 0.37 3   MBA (outer) S 21.63 10.80 LCDB  · List
379. (50554) 2000 EC24 161.9 0.60 2   MBA (outer) C 5.61 14.99 LCDB  · List
380. (16240) 2000 GJ115 161.4 0.74 2   MBA (outer) C 10.11 13.70 LCDB  · List
381. (43162) 1999 XE126 161 0.64 2   MBA (outer) C 5.66 14.96 LCDB  · List
382. (154807) 2004 PP97 161 0.96 2   NEO S 0.57 18.60 LCDB  · List
383. (198605) 2005 AM19 160.8 0.38 2   MBA (outer) C 3.15 16.24 LCDB  · List
384. 655 Briseïs 160.7 0.40 3   MBA (outer) C 30.28 10.00 LCDB  · List
385. (40237) 1998 VM6 160.3 0.22 2   Jupiter trojan C 19.06 12.33 LCDB  · List
386. 7038 Tokorozawa 160 0.60 2   Themis C 10.82 13.19 LCDB  · List
387. 5577 Priestley 160 0.85 3− Hungaria S 4.30 14.20 LCDB  · List
388. 2735 Ellen 159 1.50 3− Hungaria SDU:: 3.32 14.32 LCDB  · List
389. 1193 Africa 158.7 0.80 2+ Eunomia S 12.66 11.80 LCDB  · List
390. (50176) 2000 AH163 158.6 0.61 2   MBA (outer) C 7.89 14.24 LCDB  · List
391. (104505) 2000 GR39 158.5 0.63 2   Eunomia S 2.91 14.99 LCDB  · List
392. (83218) 2001 RP27 158 0.80 2   MBA (outer) C 7.01 14.50 LCDB  · List
393. (75903) 2000 CQ49 157.9 0.76 2   MBA (middle) S 3.32 15.51 LCDB  · List
394. (5733) 1989 AQ 157.8 0.66 2   Themis C 11.21 13.11 LCDB  · List
395. (89633) 2001 XM210 157.3 0.23 2   MBA (inner) S 1.91 15.97 LCDB  · List
396. (193313) 2000 SR308 157 0.52 2   MBA (middle) S 1.77 16.88 LCDB  · List
397. 2843 Yeti 156.7 0.45 2   Flora S 5.82 13.34 LCDB  · List
398. (67578) 2000 SO112 156.6 0.89 2   Flora S 1.16 16.85 LCDB  · List
399. (51777) 2001 MG8 155.9 0.79 2   MBA (outer) C 10.13 13.70 LCDB  · List
400. (32534) 2001 PL37 155.5 0.45 2   MBA (outer) C 11.87 13.36 LCDB  · List
401. 2018 RL 155 1.00 2+ NEO S 0.33 19.80 LCDB  · MPC
402. (270325) 2001 XC104 154.4 0.89 2   MBA (inner) S 1.03 17.30 LCDB  · List
403. Pluto 153.3 0.30 3   TNO C 2339.00  -0.76 LCDB  · List
404. 6805 Abstracta 152.2 0.78 2   Themis C 8.41 13.74 LCDB  · List
405. (76229) 2000 EK75 151.9 0.70 2   Eunomia S 3.28 14.73 LCDB  · List
406. (222679) 2001 YY54 151.9 0.57 2   MBA (inner) S 1.71 16.19 LCDB  · List
407. 763 Cupido 151.5 0.45 3− Flora S 8.97 12.60 LCDB  · List
408. (134553) 1999 RK165 151.4 0.45 2   MBA (inner) S 1.06 17.23 LCDB  · List
409. (163732) 2003 KP2 151.1 1.70 3   NEO S 2.47 15.40 LCDB  · List
410. 2705 Wu 150.5 1.20 3− Flora S 6.21 13.20 LCDB  · List
411. (86206) 1999 TK9 150.1 0.41 2   MBA (outer) C 6.61 14.63 LCDB  · List
412. (99812) 2002 LW31 150 0.80 2   MBA (outer) C 8.05 14.20 LCDB  · List
413. 14815 Rutberg 150 1.00 2   MBA (inner) S 4.10 14.30 LCDB  · List
414. 3102 Krok 149.4 1.60 3   NEO QRS 1.48 16.52 LCDB  · List
415. (15312) 1993 FH27 149.4 0.46 2   MBA (outer) C 6.13 14.79 LCDB  · List
416. 1909 Alekhin 148.6 0.45 3   MBA (inner) S 17.33 12.80 LCDB  · List
417. (86128) 1999 RC154 147.7 0.89 2   Eos S 5.08 14.22 LCDB  · List
418. (180962) 2005 MW35 147.4 0.43 2   MBA (inner) S 1.30 16.80 LCDB  · List
419. (110119) 2001 SP138 147.4 0.48 2   MBA (inner) S 2.15 15.70 LCDB  · List
420. (43052) 1999 VJ71 146.9 0.53 2   Flora S 1.31 16.57 LCDB  · List
421. (7743) 1986 JA 146.8 0.93 3− MBA (inner) S 5.93 13.50 LCDB  · List
422. (19485) 1998 HC122 146.5 0.37 2   MBA (outer) C 12.54 13.24 LCDB  · List
423. (123184) 2000 UQ6 146.4 0.66 2   MBA (middle) S 3.03 15.71 LCDB  · List
424. (143719) 2003 UU177 146.3 0.56 2   MBA (outer) C 3.51 16.00 LCDB  · List
425. 823 Sisigambis 146 0.70 2   Flora S 15.74 11.37 LCDB  · List
426. 15806 Kohei 145.7 0.29 2   Eos S 8.64 13.07 LCDB  · List
427. (7138) 1994 AK15 145.3 0.26 2   MBA (inner) S 5.05 13.85 LCDB  · List
428. (25535) 1999 XF144 145.2 0.88 2   Eunomia S 5.07 13.79 LCDB  · List
429. 1689 Floris-Jan 145 0.40 3   MBA (inner) S 16.21 11.74 LCDB  · List
430. (195957) 2002 RJ165 145 0.31 2   MBA (outer) C 4.06 15.68 LCDB  · List
431. (87580) 2000 RE16 144.9 0.45 2   MBA (middle) S 3.78 15.23 LCDB  · List
432. 4158 Santini 144.4 0.37 2   MBA (outer) C 26.64 11.60 LCDB  · List
433. (109978) 2001 ST54 144 0.30 2   MBA (outer) C 7.01 14.50 LCDB  · List
434. (52786) 1998 QP42 144 0.50 2   Flora S 1.79 15.90 LCDB  · List
435. 1137 Raïssa 142.8 0.56 3− MBA (inner) S 23.66 10.78 LCDB  · List
436. (248503) 2005 UN480 142.7 0.90 2   MBA (outer) C 3.62 15.93 LCDB  · List
437. (285032) 2011 EX26 140.9 0.55 2   MBA (outer) C 2.89 16.42 LCDB  · List
438. (162921) 2001 OL11 140.1 0.34 2   MBA (outer) C 4.21 15.61 LCDB  · List
439. (39618) 1994 LT 140 0.85 2   Hungaria E 2.02 15.40 LCDB  · List
440. 2423 Ibarruri 139.8 0.74 3   Mars crosser C 6.50 13.30 LCDB  · List
441. (51010) 2000 GN103 139.2 0.39 2   Nysa S 1.75 16.10 LCDB  · List
442. 1473 Ounas 139.1 0.60 3   MBA (inner) S 17.62 11.70 LCDB  · List
443. 38454 Boroson 138.8 0.85 2   Eunomia S 5.18 13.74 LCDB  · List
444. (201746) 2003 UN276 138.8 0.83 2   MBA (outer) C 3.81 15.83 LCDB  · List
445. (66775) 1999 TS220 138.3 0.49 2   MBA (outer) C 5.52 15.02 LCDB  · List
446. (144564) 2004 FE13 138.1 0.87 2   Flora S 1.75 15.96 LCDB  · List
447. (17149) 1999 JM105 138.1 0.50 2   MBA (outer) C 7.81 14.26 LCDB  · List
448. 1451 Granö 138 0.65 2+ Flora S 7.13 13.10 LCDB  · List
449. 1329 Eliane 137.8 0.43 2   MBA (middle) S 19.63 10.90 LCDB  · List
450. (16592) 1992 TM1 137.7 0.19 2   Eunomia S 10.10 12.29 LCDB  · List
451. 2792 Ponomarev 137.6 0.44 2   MBA (inner) S 5.98 13.48 LCDB  · List
452. 17645 Inarimori 137.4 0.69 2   MBA (outer) C 12.33 13.27 LCDB  · List
453. (64963) 2001 YP144 137.2 0.65 2   Vestian S 2.06 15.80 LCDB  · List
454. (53337) 1999 JX42 137.1 0.41 2   MBA (outer) C 5.75 14.93 LCDB  · List
455. (17689) 1997 CS 137.1 0.46 2   Eos S 8.33 13.15 LCDB  · List
456. (137065) 1998 WH6 136.9 0.80 2   MBA (inner) S 1.48 16.51 LCDB  · List
457. (20875) 2000 VU49 136.7 0.65 2   MBA (outer) C 7.32 14.41 LCDB  · List
458. (25505) 1999 XQ95 136.6 0.31 2   MBA (inner) S 5.17 13.80 LCDB  · List
459. 1954 Kukarkin 136.4 0.80 3− MBA (outer) C 30.59 11.30 LCDB  · List
460. (38990) 2000 UZ17 136.2 0.70 2   MBA (outer) C 3.67 15.91 LCDB  · List
461. (53319) 1999 JM8 136 0.70 2   NEO X 7.00 15.20 LCDB  · List
462. (14452) 1992 WB9 135.8 0.59 2   MBA (outer) C 8.88 13.99 LCDB  · List
463. (22100) 2000 GV93 135.7 0.27 2   MBA (outer) C 9.54 13.83 LCDB  · List
464. 16231 Jessberger 135.7 0.87 2   Themis C 5.98 14.48 LCDB  · List
465. 8457 Billgolisch 135.7 0.19 2   MBA (middle) S 6.42 14.08 LCDB  · List
466. (20562) 1999 RV120 135.4 0.43 2+ MBA (inner) S 5.66 13.60 LCDB  · List
467. (301945) 2000 BC15 135.3 0.44 2   Eunomia S 1.41 16.56 LCDB  · List
468. (15659) 2141 T-2 135.2 0.47 2   MBA (outer) C 7.96 14.22 LCDB  · List
469. (316249) 2010 OL55 135 0.47 2   MBA (outer) C 3.07 16.29 LCDB  · List
470. (443103) 2013 WT67 135 1.10 2   NEO S 0.75 18.00 LCDB  · List
471. (161101) 2002 PL154 134.6 0.61 2   MBA (outer) C 3.68 15.90 LCDB  · List
472. (275300) 2010 OH118 134.5 0.80 2   MBA (outer) C 3.85 15.80 LCDB  · List
473. (109244) 2001 QZ98 134.4 0.36 2   MBA (inner) S 1.86 16.02 LCDB  · List
474. (114334) 2002 XW65 134.4 0.54 2   MBA (inner) S 3.96 14.37 LCDB  · List
475. (51801) 2001 NZ2 133.9 0.18 2   MBA (outer) C 8.20 14.16 LCDB  · List
476. (5626) 1991 FE 133.6 0.44 2   NEO S 4.30 14.20 LCDB  · List
477. (23478) 1991 BZ 133.4 0.36 2   MBA (outer) C 8.46 14.09 LCDB  · List
478. (110586) 2001 TN122 133.2 0.67 2   MBA (outer) C 4.66 15.39 LCDB  · List
479. 2546 Libitina 132.7 0.35 2+ MBA (middle) S 18.34 11.80 LCDB  · List
480. (23501) 1992 CK1 132.7 0.82 2   MBA (outer) C 8.82 14.00 LCDB  · List
481. 1512 Oulu 132.3 0.33 2+ Hilda P 82.72  9.62 LCDB  · List
482. (157312) 2004 SU32 131.7 0.52 2   MBA (outer) C 3.22 16.19 LCDB  · List
483. 7898 Ohkuma 131.3 0.60 2   Flora S 4.18 14.06 LCDB  · List
484. 1989 Tatry 131.3 0.50 2   Vestian C 17.60 12.50 LCDB  · List
485. 2874 Jim Young 131.3 0.75 2   Flora S 7.13 12.90 LCDB  · List
486. (93894) 2000 WM141 131.3 0.40 2   MBA (inner) S 4.12 14.29 LCDB  · List
487. (143035) 2002 VS121 131.2 0.76 2   Eunomia S 2.23 15.57 LCDB  · List
488. 5672 Libby 131.1 0.66 2   MBA (inner) S 6.03 13.46 LCDB  · List
489. (111074) 2001 VW51 130.9 0.77 2   MBA (outer) C 3.20 16.20 LCDB  · List
490. (152863) 1999 XZ114 130.4 0.50 2   MBA (outer) C 4.52 15.45 LCDB  · List
491. 9228 Nakahiroshi 130.3 0.25 2   MBA (outer) C 17.82 12.47 LCDB  · List
492. (143116) 2002 XT27 130.1 0.32 2   Eunomia S 2.05 15.76 LCDB  · List
493. 2000 Herschel 130 1.16 2   MBA (inner) S 16.71 11.25 LCDB  · List
494. 3839 Bogaevskij 129.9 0.44 2   Nysa S 5.79 13.50 LCDB  · List
495. 5807 Mshatka 129.8 0.63 2   MBA (outer) C 13.98 13.00 LCDB  · List
496. 244 Sita 129.5 0.82 3− Flora S 11.08 11.90 LCDB  · List
497. (267729) 2003 FC5 129.5 0.50 2   NEO S 0.56 18.61 LCDB  · List
498. (62853) 2000 UO76 129.3 0.88 2   MBA (outer) C 5.61 14.98 LCDB  · List
499. 22812 Ricker 129.2 0.58 2   Nysa S 1.79 16.05 LCDB  · List
500. (89182) 2001 UQ68 128.8 0.84 2   MBA (outer) C 6.80 14.56 LCDB  · List
501. (15274) 1991 GO6 128.6 0.30 2   Eunomia S 3.88 14.37 LCDB  · List
502. (31091) 1997 BE9 128.4 0.77 2   Hungaria E 1.41 16.18 LCDB  · List
503. (135421) 2001 UC49 128.3 0.61 2   MBA (outer) C 4.86 15.29 LCDB  · List
504. (13468) 3378 T-3 128.1 0.55 2   MBA (inner) S 2.40 15.47 LCDB  · List
505. (62340) 2000 SO130 128 0.62 2   MBA (outer) C 5.44 15.05 LCDB  · List
506. 2430 Bruce Helin 128 0.67 2   Phocaea S 11.55 11.90 LCDB  · List
507. 16589 Hastrup 128 0.62 2   Hungaria E 2.19 14.96 LCDB  · List
508. (136940) 1998 QG45 127.5 0.51 2   MBA (inner) S 1.57 16.39 LCDB  · List
509. 25512 Anncomins 127.1 0.26 2   Flora S 2.26 15.40 LCDB  · List
510. (170914) 2004 XN122 126.8 0.61 2   MBA (inner) S 1.15 17.05 LCDB  · List
511. (60310) 1999 XD215 126.6 0.62 2   Eunomia S 2.57 15.26 LCDB  · List
512. 4327 Ries 126.6 0.85 2   MBA (outer) C 20.97 12.12 LCDB  · List
513. (14451) 1992 WR5 126.6 0.38 2   MBA (outer) C 15.07 12.84 LCDB  · List
514. (124620) 2001 SS50 126.5 0.39 2   Erigone C 2.92 16.40 LCDB  · List
515. (128693) 2004 RZ92 126.4 0.93 2   MBA (outer) C 4.10 15.66 LCDB  · List
516. (242864) 2006 GJ50 126.3 1.18 2   MBA (middle) SC 2.21 16.40 LCDB  · List
517. 571 Dulcinea 126.3 0.50 3   MBA (inner) S 14.29 11.59 LCDB  · List
518. 3020 Naudts 126.2 0.46 2   MBA (outer) C 16.02 12.71 LCDB  · List
519. (190395) 1999 TR109 126 0.53 2   MBA (outer) C 3.65 15.91 LCDB  · List
520. (228328) 2000 RO19 125.6 0.76 2   MBA (middle) S 2.28 16.33 LCDB  · List
521. 6995 Minoyama 125.3 0.76 2   MBA (inner) S 5.72 13.58 LCDB  · List
522. (110059) 2001 SK107 125.2 0.46 2   MBA (outer) C 4.84 15.30 LCDB  · List
523. (95704) 2002 JS124 125.1 1.00 2   MBA (inner) S 2.71 15.20 LCDB  · List
524. 1575 Winifred 125 1.20 3   Phocaea S 9.40 12.10 LCDB  · List
525. (152679) 1998 KU2 125 1.35 2   NEO S 1.42 16.60 LCDB  · List
526. (119553) 2001 VH36 124.1 0.90 2   MBA (inner) S 2.51 15.37 LCDB  · List
527. 33699 Jessiegan 124 0.33 2   MBA (outer) C 6.31 14.73 LCDB  · List
528. 2678 Aavasaksa 124 1.30 2   Flora S 8.58 12.50 LCDB  · List
529. (35532) 1998 FV71 123.8 0.40 2   MBA (middle) S 3.89 15.17 LCDB  · List
530. (234886) 2002 TL88 123.7 0.67 2   MBA (outer) C 3.30 16.14 LCDB  · List
531. 959 Arne 123.7 0.24 3− MBA (outer) C 57.20 10.80 LCDB  · List
532. (372858) 2010 VB171 123.5 0.39 2   Mars crosser S 0.68 18.21 LCDB  · List
533. 2629 Rudra 123.2 0.58 2   Mars crosser S 2.19 15.67 LCDB  · List
534. (31173) 1997 XF1 122.8 0.67 2+ Hungaria E 2.54 14.90 LCDB  · List
535. 14980 Gustavbrom 122.6 0.51 2   MBA (outer) C 5.71 14.95 LCDB  · List
536. 4689 Donn 122.5 0.64 2+ Flora S 5.51 13.46 LCDB  · List
537. (134555) 1999 RN169 122.4 0.29 2   Erigone C 2.88 16.43 LCDB  · List
538. 870 Manto 122.3 0.80 3   MBA (inner) S 13.71 11.68 LCDB  · List
539. 1775 Zimmerwald 122 0.60 2+ Eunomia S 11.55 12.00 LCDB  · List
540. (26084) 1981 EK17 122 0.68 2   Vestian S 2.83 15.11 LCDB  · List
541. (97314) 1999 XV206 121.7 0.67 2   MBA (outer) C 4.83 15.31 LCDB  · List
542. (21002) 1987 QU7 121.6 0.41 2   MBA (inner) S 3.13 14.89 LCDB  · List
543. 12465 Perth Amboy 121.6 0.87 2   Nysa S 2.40 15.41 LCDB  · List
544. 1007 Pawlowia 121 0.51 2   MBA (outer) K 30.59 11.30 LCDB  · List
545. (76708) 2000 HE101 121 0.67 2   MBA (outer) C 6.15 14.78 LCDB  · List
546. (247283) 2001 SC187 120.4 0.93 2   MBA (outer) C 3.82 15.82 LCDB  · List
547. 988 Appella 120 0.40 2   Themis S 25.77 11.60 LCDB  · List
548. (21207) 1994 PH29 120 0.50 2   MBA (outer) C 8.43 14.10 LCDB  · List
549. 2936 Nechvile 119.6 0.48 2   MBA (middle) S 13.52 12.46 LCDB  · List
550. (443923) 2002 RU25 119.4 0.98 2   NEO S 0.90 17.60 LCDB  · List
551. 9910 Vogelweide 118.9 0.74 2   Koronis S 4.94 13.70 LCDB  · List
552. 1455 Mitchella 118.7 0.60 2+ Flora S 7.47 12.80 LCDB  · List
553. (122007) 2000 GC7 118.2 0.74 2   MBA (inner) S 1.96 15.90 LCDB  · List
554. 4951 Iwamoto 118 0.38 3   MBA (inner) S 5.53 13.74 LCDB  · List
555. 4635 Rimbaud 117.9 1.08 2+ Vestian S 7.46 13.00 LCDB  · List
556. 7694 Krasetin 117.8 0.92 3− MBA (outer) C 20.21 12.20 LCDB  · List
557. (163594) 2002 TH207 117.7 0.94 2   MBA (outer) C 3.05 16.31 LCDB  · List
558. (36713) 2000 RV33 116.9 0.52 2   MBA (outer) C 6.12 14.80 LCDB  · List
559. (376059) 2010 FY14 116.9 0.60 2   MBA (outer) C 4.20 15.61 LCDB  · List
560. (17297) 3560 P-L 116.8 0.74 2   MBA (outer) C 17.48 12.51 LCDB  · List
561. (21954) 1999 VU178 115.7 0.41 2   Eunomia S 3.14 14.83 LCDB  · List
562. (146918) 2002 CT225 115.7 0.83 2   MBA (outer) C 5.25 15.13 LCDB  · List
563. 4219 Nakamura 115.5 0.20 2   Nysa S 4.62 13.99 LCDB  · List
564. 12868 Onken 115 0.60 2   MBA (outer) C 15.33 12.80 LCDB  · List
565. (280589) 2004 TX348 114.7 0.46 2   MBA (outer) C 2.55 16.69 LCDB  · List
566. (75353) 1999 XL69 114.7 0.30 2   MBA (inner) S 1.75 16.14 LCDB  · List
567. (107855) 2001 FU78 114.6 0.37 2   Flora S 1.79 15.90 LCDB  · List
568. (201710) 2003 UO167 114.6 0.75 2   MBA (outer) C 3.51 16.00 LCDB  · List
569. (121534) 1999 UJ41 114.5 0.57 2   MBA (outer) C 3.13 16.25 LCDB  · List
570. (253198) 2002 XO60 114.5 0.67 2   MBA (inner) S 1.50 16.49 LCDB  · List
571. (143651) 2003 QO104 114.4 1.60 3   NEO S 1.88 16.00 LCDB  · List
572. 2845 Franklinken 114 0.80 3− Baptistina C 12.18 13.30 LCDB  · List
573. (18582) 1997 XK9 114 0.94 3   Hungaria E 4.84 13.50 LCDB  · List
574. (15533) 2000 AP138 114 0.38 3   MBA (inner) S 4.42 14.18 LCDB  · List
575. (116301) 2003 YZ60 114 0.80 2   MBA (outer) C 3.38 16.08 LCDB  · List
576. (258817) 2002 NY57 113.8 0.60 2   MBA (outer) C 4.61 15.41 LCDB  · List
577. (13593) 1994 NF1 113.7 0.64 2   MBA (inner) S 4.02 14.34 LCDB  · List
578. (200481) 2000 YX17 113.6 1.11 2   MBA (inner) S 1.84 16.04 LCDB  · List
579. (48593) 1994 VF 113.3 0.81 2   MBA (inner) S 2.39 15.48 LCDB  · List
580. 6582 Flagsymphony 113.3 0.28 2+ MBA (outer) C 15.33 12.80 LCDB  · List
581. 3138 Ciney 113 0.56 2+ Flora S 5.93 13.30 LCDB  · List
582. (15778) 1993 NH 113 0.61 2   Mars crosser S 3.41 14.70 LCDB  · List
583. (411201) 2010 LJ14 113 0.85 2   NEO S 0.82 17.80 LCDB  · List
584. (40893) 1999 TL138 113 0.35 2   MBA (outer) C 4.90 15.28 LCDB  · List
585. 100229 Jeanbailly 112.9 0.51 2   Hilda C 7.70 14.30 LCDB  · List
586. 7489 Oribe 112.7 0.80 2   MBA (outer) C 9.65 13.81 LCDB  · List
587. 5561 Iguchi 112.4 0.43 2   Flora S 5.93 13.30 LCDB  · List
588. 21609 Williamcaleb 112 0.50 2   MBA (inner) S 4.71 14.00 LCDB  · List
589. (378610) 2008 FT6 112 0.77 2   NEO S 0.98 17.40 LCDB  · List
590. 3383 Koyama 111.8 0.62 2   MBA (inner) S 8.76 12.65 LCDB  · List
591. (247651) 2002 WK15 111.6 0.61 2   MBA (outer) C 3.34 16.11 LCDB  · List
592. (102588) 1999 UM52 111.2 0.46 2   MBA (outer) C 6.69 14.60 LCDB  · List
593. 5390 Huichiming 111 0.75 2+ Hungaria E 4.62 13.60 LCDB  · List
594. 9233 Itagijun 111 0.60 2   MBA (inner) S 7.13 13.10 LCDB  · List
595. (31068) 1996 TT54 110.8 0.64 2   MBA (middle) S 7.12 13.85 LCDB  · List
596. (112324) 2002 MA3 110.8 0.59 2   Flora S 1.16 16.85 LCDB  · List
597. (230290) 2001 YQ13 110.5 0.84 2   MBA (inner) S 1.48 16.51 LCDB  · List
598. (219543) 2001 QB293 110.4 0.40 2   MBA (inner) S 1.53 16.44 LCDB  · List
599. (93756) 2000 WZ8 110.3 0.55 2   MBA (inner) S 3.41 14.70 LCDB  · List
600. (42500) 1992 RV6 110.2 0.63 2   Themis C 5.00 14.86 LCDB  · List
601. (58085) 1199 T-3 110 0.80 2   MBA (outer) C 5.31 15.10 LCDB  · List
602. (223751) 2004 RR196 110 0.55 2   MBA (outer) C 3.81 15.83 LCDB  · List
603. (60024) 1999 TW47 109.9 0.28 2   MBA (outer) C 4.39 15.51 LCDB  · List
604. 343 Ostara 109.9 0.52 3− MBA (inner) CSGU 19.03 11.74 LCDB  · List
605. (42282) 2001 SB283 109.7 0.83 2   Eunomia S 3.44 14.63 LCDB  · List
606. (366326) 2013 EW39 109.6 0.58 2   MBA (middle) S 1.93 16.69 LCDB  · List
607. (15701) 1987 RG1 109.4 0.50 2   MBA (inner) S 3.25 14.81 LCDB  · List
608. (108067) 2001 FO165 109.3 0.73 2   Flora S 1.28 16.63 LCDB  · List
609. (149612) 2004 EO7 109.3 0.80 2   Flora S 1.25 16.68 LCDB  · List
610. (134696) 1999 XZ96 109.1 0.44 2   MBA (inner) S 1.41 16.62 LCDB  · List
611. (523186) 2016 UG5 109.1 0.97 2   Hungaria ES 0.42 18.80 LCDB  · List
612. 9739 Powell 109 0.40 2   Hungaria E 3.82 13.70 LCDB  · List
613. (5773) 1989 NO 109 0.74 2   Flora S 5.17 13.60 LCDB  · List
614. 5518 Mariobotta 108.6 0.56 2+ Flora S 7.14 12.90 LCDB  · List
615. 946 Poësia 108.5 0.32 2+ Themis FU 43.75 10.42 LCDB  · List
616. (162772) 2000 WX175 108.5 0.75 2   MBA (inner) S 1.87 16.01 LCDB  · List
617. (119175) 2001 QU53 108.5 0.71 2   MBA (inner) S 1.20 16.98 LCDB  · List
618. (37212) 2000 WO126 108.2 1.04 2   MBA (outer) C 5.93 14.86 LCDB  · List
619. 57868 Pupin 108.1 0.93 3− MBA (inner) S 2.59 15.30 LCDB  · List
620. 989 Schwassmannia 107.9 0.39 3   MBA (middle) S 12.81 11.90 LCDB  · List
621. (201187) 2002 PK70 107.1 0.44 2   MBA (outer) C 4.22 15.60 LCDB  · List
622. 5711 Eneev 107.1 0.15 2   Hilda C 38.81 11.10 LCDB  · List
623. 1703 Barry 107.1 0.50 3   Flora S 9.54 12.10 LCDB  · List
624. 6626 Mattgenge 107.1 0.48 2   MBA (outer) C 6.53 14.66 LCDB  · List
625. (113507) 2002 TS7 106.6 0.62 2   MBA (outer) C 6.97 14.51 LCDB  · List
626. 3935 Toatenmongakkai 106.3 0.58 2   MBA (inner) S 11.50 11.90 LCDB  · List
627. (69317) 1993 FB20 106.3 1.50 3− MBA (inner) S 2.97 15.00 LCDB  · List
628. 5691 Fredwatson 106 1.20 3− Phocaea S 6.06 13.30 LCDB  · List
629. 3043 San Diego 105.7 0.60 3− Hungaria E 4.42 13.70 LCDB  · List
630. (147241) 2002 XW62 105.5 0.67 2   MBA (inner) S 1.53 16.44 LCDB  · List
631. 1773 Rumpelstilz 105.4 0.77 3   Vestian S 12.39 11.90 LCDB  · List
632. 9488 Huia 105.3 0.80 2   Flora S 2.71 15.00 LCDB  · List
633. 7153 Vladzakharov 105.1 0.76 2   MBA (inner) S 3.06 14.94 LCDB  · List
634. (33313) 1998 KJ60 105 0.62 2   MBA (outer) C 6.49 14.67 LCDB  · List
635. 33319 Kunqu 105 0.90 2+ Hungaria E 2.43 15.00 LCDB  · List
636. (106620) 2000 WL124 104.5 0.58 2   Hungaria E 2.43 15.00 LCDB  · List
637. (25866) 2000 GA100 104.5 0.52 2   MBA (outer) C 9.96 13.74 LCDB  · List
638. (6003) 1988 VO1 104.4 0.42 2   Flora S 5.67 13.40 LCDB  · List
639. (161221) 2002 XJ1 104.2 0.42 2   MBA (outer) C 4.66 15.39 LCDB  · List
640. 2077 Kiangsu 104.2 0.30 2+ Mars crosser S 5.66 13.60 LCDB  · List
641. (8173) 1991 RX23 104.1 0.74 2   Eos S 5.88 13.90 LCDB  · List
642. (93738) 2000 VQ50 104 0.50 2   Eunomia S 3.41 14.65 LCDB  · List
643. (6425) 1994 WZ3 103.9 0.92 2   Eunomia C 10.06 12.30 LCDB  · List
644. (44683) 1999 RR197 103.8 0.72 2   Flora S 2.14 15.51 LCDB  · List
645. (145553) 2006 LN5 103.3 0.56 2   MBA (inner) S 1.26 16.86 LCDB  · List
646. 14819 Nikolaylaverov 103.3 0.58 2   MBA (inner) S 3.07 14.93 LCDB  · List
647. (22357) 1992 YJ 103 0.54 2   MBA (inner) S 5.66 13.60 LCDB  · List
648. 26447 Akrishnan 102.9 0.56 2   Nysa S 2.37 15.44 LCDB  · List
649. (112516) 2002 PG26 102.9 0.63 2   MBA (outer) C 4.78 15.33 LCDB  · List
650. 617 Patroclus 102.8 0.07 3   Jupiter trojan P 140.92  8.19 LCDB  · List
651. (13378) 1998 VF35 102.5 0.77 2   Eos S 10.43 12.66 LCDB  · List
652. (203819) 2002 TZ237 102.3 0.20 2   MBA (outer) C 4.08 15.68 LCDB  · List
653. (214869) 2007 PA8 102.2 0.58 3   NEO S 1.38 16.67 LCDB  · List
654. (96144) 3466 T-3 102.2 0.68 2   MBA (outer) C 4.27 15.58 LCDB  · List
655. (7663) 1994 RX1 102.1 0.34 2   Phocaea S 4.21 14.09 LCDB  · List
656. (91339) 1999 JR15 101.9 0.35 2   MBA (inner) S 4.06 14.32 LCDB  · List
657. (197299) 2003 WH128 101.8 0.60 2   MBA (outer) C 4.11 15.66 LCDB  · List
658. (43464) 2001 AA9 101.6 0.75 2   Flora S 1.98 15.68 LCDB  · List
659. (123754) 2001 AR32 101.4 0.90 2   MBA (inner) S 2.06 15.80 LCDB  · List
660. (33295) 1998 KV40 101.3 0.98 2   Eos S 4.97 14.27 LCDB  · List
661. 19763 Klimesh 101 0.67 2   Phocaea S 7.29 13.27 LCDB  · List
662. 930 Westphalia 100.7 0.15 2   MBA (inner) C 36.53 11.20 LCDB  · List
663. 1097 Vicia 100.5 0.14 2   MBA (middle) S 20.99 12.00 LCDB  · List
664. (169855) 2002 RU41 100.4 0.90 2   MBA (outer) C 4.72 15.36 LCDB  · List
665. 2004 XP14 100 2   NEO S 0.30 19.40 LCDB  · MPC
666. 2005 OE3 100 2   NEO S 0.26 20.30 LCDB  · MPC

back to top WWC arrow up.png

Potentially slow rotators

Potentially slow rotators have their rotation period estimated based on a fragmentary light curve. They are listed separately from the more reliable results above, that have a quality code (U) of 2 or higher. The periods for potentially slow rotators may be completely wrong (U = 1), have no complete and conclusive result (U = n.a.), a large error margins of more than 30% (U = 2−), or anything in between.

Possible periods above 1000 hours

Minor planet designation Rotation period
(hours)
Δmag Quality
(U)
Orbit or family Spectral type Diameter
(km)
Abs. mag
(H)
Refs
(300163) 2006 VW139 3240 n.a. MBA (outer) C 3.20 16.20 LCDB  · List
(11474) 1982 SM2 1917.2 0.04 1   Baptistina C 5.71 14.94 LCDB  · List
(145727) 1994 PL29 1084.9 0.06 1   Nysa S 1.43 16.54 LCDB  · List
5316 Filatov 1061.4 0.07 1   MBA (outer) C 22.95 11.92 LCDB  · List

back to top WWC arrow up.png

Possible periods between 500 and 1000 hours

Minor planet designation Rotation period
(hours)
Δmag Quality
(U)
Orbit or family Spectral type Diameter
(km)
Abs. mag
(H)
Refs
(79590) 1998 RX19 988.8 0.07 1   Flora S 1.87 15.81 LCDB  · List
9556 Gaywray 920 0.50 2− Phocaea S 6.48 13.71 LCDB  · List
(111346) 2001 XS103 747.7 0.07 1   Mars crosser S 1.18 17.01 LCDB  · List
3322 Lidiya 710 0.60 1   Phocaea S 7.99 12.70 LCDB  · List
17091 Senthalir 679.9 0.07 1   MBA (outer) C 8.37 14.11 LCDB  · List
(22121) 2000 SM107 537.5 0.05 1   MBA (inner) S 2.59 15.30 LCDB  · List
(188077) 2001 XW47 525 0.30 2− Hungaria E 1.60 15.90 LCDB  · List
(24454) 2000 QF198 500 0.40 2− Jupiter trojan C 29.21 11.40 LCDB  · List

back to top WWC arrow up.png

Possible periods of 400+ hours

Minor planet designation Rotation period
(hours)
Δmag Quality
(U)
Orbit or family Spectral type Diameter
(km)
Abs. mag
(H)
Refs
20571 Tiamorrison 450 0.60 2− Flora S 2.97 14.80 LCDB  · List
12860 Turney 438.1 0.08 1   MBA (inner) S 3.04 14.95 LCDB  · List
(41917) 2000 WC153 412.6 0.09 1   Flora S 1.73 15.97 LCDB  · List
(106647) 2000 WC135 411.1 0.07 1   Flora S 1.44 16.38 LCDB  · List
(39687) 1996 RL3 402.5 0.10 1   Flora S 1.70 16.01 LCDB  · List
7119 Hiera 400 0.10 1   Jupiter trojan C 76.45  9.70 LCDB  · List
(13366) 1998 US24 400 0.23 2− Jupiter trojan C 32.03 11.20 LCDB  · List

back to top WWC arrow up.png

Possible periods of 300+ hours

Minor planet designation Rotation period
(hours)
Δmag Quality
(U)
Orbit or family Spectral type Diameter
(km)
Abs. mag
(H)
Refs
(22135) 2000 UA100 393 0.25 2− Eunomia S 6.96 13.10 LCDB  · List
(98063) 2000 RG48 358.3 0.08 1   Flora S 1.73 15.98 LCDB  · List
(266992) 2010 XR43 350 n.a. Jupiter trojan C 12.18 13.30 LCDB  · List
5511 Cloanthus 336 0.49 2− Jupiter trojan C 48.48 10.30 LCDB  · List
(381677) 2009 BJ81 325 0.40 n.a. NEO S 0.65 18.30 LCDB  · List
(36227) 1999 UR5 322 0.07 1   MBA (outer) C 12.11 13.31 LCDB  · List

back to top WWC arrow up.png

Possible periods of 200+ hours

Minor planet designation Rotation period
(hours)
Δmag Quality
(U)
Orbit or family Spectral type Diameter
(km)
Abs. mag
(H)
Refs
(17122) 1999 JH63 290.1 0.09 1   Koronis S 4.84 13.74 LCDB  · List
(31013) 1996 DR 280 0.50 2− MBA (inner) S 4.50 14.10 LCDB  · List
3184 Raab 274.9 0.09 1   MBA (middle) S 13.25 12.51 LCDB  · List
7188 Yoshii 260 0.49 1+ Flora S 4.50 13.90 LCDB  · List
(103405) 2000 AM134 260 0.50 1   MBA (inner) S 1.71 16.20 LCDB  · List
(41609) 2000 SR117 259.9 0.07 1   Erigone C 3.13 16.25 LCDB  · List
(5025) 1986 TS6 250 0.20 1   Jupiter trojan C 57.56 10.30 LCDB  · List
(15977) 1998 MA11 250 0.30 2− Jupiter trojan C 46.30 10.40 LCDB  · List
(84045) 2002 PN58 240 0.50 1   MBA (inner) S 2.06 15.80 LCDB  · List
(65240) 2002 EU106 230 0.22 1   Jupiter trojan C 16.81 12.60 LCDB  · List
(35259) 1996 HN24 230 0.45 2− Flora S 3.58 14.40 LCDB  · List
(185085) 2006 RG92 220 0.40 1   MBA (outer) C 3.06 16.30 LCDB  · List
8885 Sette 212 0.50 2− MBA (inner) S 5.41 13.70 LCDB  · List
(108592) 2001 MC13 208.1 0.08 1   MBA (inner) S 1.90 15.98 LCDB  · List
(145425) 2005 QP39 200 0.60 2− MBA (outer) C 5.57 15.00 LCDB  · List
(43904) 1995 WO 200 0.34 2− MBA (inner) S 2.84 15.10 LCDB  · List

back to top WWC arrow up.png

Possible periods of 100+ hours

Minor planet designation Rotation period
(hours)
Δmag Quality
(U)
Orbit or family Spectral type Diameter
(km)
Abs. mag
(H)
Refs
(51220) 2000 JG23 198.8 0.08 1   Eunomia S 2.85 15.04 LCDB  · List
(90585) 2032 P-L 196.5 0.08 1   MBA (inner) S 2.25 15.60 LCDB  · List
(109362) 2001 QO157 194.8 0.08 1   Vestian S 1.66 16.26 LCDB  · List
(33816) 2000 AL42 193 0.12 2− Hungaria E 2.54 14.90 LCDB  · List
(60949) 2000 JM61 185.3 0.08 1   MBA (inner) S 1.71 16.20 LCDB  · List
3436 Ibadinov 170 1.00 1   Koronis S 8.58 12.50 LCDB  · List
(16558) 1991 VQ2 170 1.00 2− Phocaea S 5.53 13.50 LCDB  · List
(104296) 2000 ET169 167.3 0.09 1   MBA (outer) C 5.77 14.92 LCDB  · List
(29019) 6095 P-L 160 0.35 1+ MBA (outer) C 8.82 14.00 LCDB  · List
44530 Horakova 160 2.68 1   MBA (inner) S 7.13 13.10 LCDB  · List
(33108) 1997 YJ18 155 0.40 1+ Koronis C 4.30 14.00 LCDB  · List
957 Camelia 150 0.30 1+ MBA (outer) C 73.63  9.90 LCDB  · List
(77216) 2001 FO24 150 1.00 1+ MBA (outer) C 5.32 15.10 LCDB  · List
(79782) 1998 UN40 150 0.20 1+ MBA (inner) S 2.59 15.30 LCDB  · List
(57453) 2001 SL70 148.7 0.08 1   Flora S 2.16 15.50 LCDB  · List
(49586) 1999 CD138 144 1.00 2− MBA (outer) C 9.67 13.80 LCDB  · List
(72823) 2001 HO3 141.4 0.09 1   MBA (outer) C 8.82 14.00 LCDB  · List
4147 Lennon 137 0.60 1   Vestian S 7.46 13.00 LCDB  · List
4283 Stoffler 136 0.65 2− Phocaea S 7.99 12.70 LCDB  · List
(27005) 1998 DR35 134 1.20 1+ MBA (inner) S 3.92 14.40 LCDB  · List
(15241) 1989 ST3 133.8 0.10 1   MBA (middle) S 3.82 15.21 LCDB  · List
(200032) 2007 PU43 132 1.80 1+ Jupiter trojan C 14.64 12.90 LCDB  · List
19598 Luttrell 132 0.09 1   Flora S 2.29 15.37 LCDB  · List
10390 Lenka 130 0.09 1   MBA (inner) S 2.37 15.49 LCDB  · List
(496174) 2011 CQ4 128 0.19 2− NEO S 0.62 18.40 LCDB  · List
(279121) 2009 OP22 126.5 0.10 1   MBA (inner) S 1.06 17.25 LCDB  · List
(134549) 1999 RN154 124 0.55 2− Flora S 1.97 15.70 LCDB  · List
(56056) 1998 XP58 121.1 0.06 1   Flora S 2.70 15.01 LCDB  · List
(136992) 1998 SL45 119 0.30 1+ MBA (inner) S 2.36 15.50 LCDB  · List
(377993) 2006 RC39 116 0.50 1   Flora S 0.94 17.30 LCDB  · List
15132 Steigmeyer 115 0.62 1+ Vestian S 2.15 15.70 LCDB  · List
2013 BE19 115 0.40 2− NEO S 0.33 19.80 LCDB  · MPC
(52011) 2002 LW19 114.5 0.08 1   MBA (inner) S 2.45 15.42 LCDB  · List
(146975) 2002 NF26 111.3 0.09 1   Baptistina C 2.23 16.99 LCDB  · List
(39240) 2000 YZ69 105 1.60 2− MBA (outer) C 7.34 14.40 LCDB  · List
3454 Lieske 105 0.73 2− Flora S 5.93 13.30 LCDB  · List
39420 Elizabethgaskell 105 1.60 2− Hungaria E 2.43 15.00 LCDB  · List
1581 Abanderada 102.8 0.10 2− Themis BCU 39.28 10.85 LCDB  · List
3981 Stodola 102.7 0.08 1   Themis C 16.58 12.26 LCDB  · List
(98342) 2000 SD299 102.5 0.09 1   Flora S 1.17 16.82 LCDB  · List
21369 Gertfinger 100.9 0.09 1   MBA (outer) C 8.68 14.04 LCDB  · List
4558 Janesick 100 0.11 1   Mars crosser S 8.30 12.77 LCDB  · List
(32750) 1981 EG9 100 0.60 1   MBA (outer) C 7.68 14.30 LCDB  · List
(95711) 2003 AK 100 0.70 2− Mars crosser S 3.41 14.70 LCDB  · List
(90454) 2004 CV 100 0.30 2− Flora S 2.26 15.40 LCDB  · List
(80636) 2000 AV214 100 3.00 1   MBA (inner) S 1.42 16.60 LCDB  · List

back to top WWC arrow up.png

See also

References

  1. ^ Data source, reference: Warner, B.D., Harris, A.W., Pravec, P. (2009). Icarus 202, 134–146.[2] Updated 2016 September 6. See: www.MinorPlanet.info
  1. ^ a b c "LCDB: Summary Table Query Form". Asteroid Lightcurve Database (LCDB). Retrieved 1 June 2019.
  2. ^ a b Warner, Brian D.; Harris, Alan W.; Pravec, Petr (July 2009). "The asteroid lightcurve database". Icarus. 202 (1): 134–146. Bibcode:2009Icar..202..134W. doi:10.1016/j.icarus.2009.02.003. Retrieved 15 September 2016.
  3. ^ a b "About Light Curves". ALCDEF – Asteroid Lightcurve Photometry Database. Retrieved 23 March 2017.
  4. ^ "Readme – 4.1.2  U (Quality) Code". Asteroid Lightcurve Database (LCDB). Retrieved 27 May 2018.
  5. ^ "JPL Small-Body Database Browser: Definition/Description for SBDB Parameter/Field". Jet Propulsion Laboratory. Retrieved 14 September 2016.
  6. ^ a b "Readme – 3.1.1  Synodic Versus Sidereal Period". Asteroid Lightcurve Database (LCDB). Retrieved 27 May 2018.

External links

This page was last edited on 1 June 2019, at 10:28
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.