To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

# Slash distribution

Parameters Probability density function Cumulative distribution function none ${\displaystyle x\in (-\infty ,\infty )}$ ${\displaystyle {\begin{cases}{\frac {\varphi (0)-\varphi (x)}{x^{2}}}&x\neq 0\\{\frac {1}{2{\sqrt {2\pi }}}}&x=0\\\end{cases}}}$ ${\displaystyle {\begin{cases}\Phi (x)-\left[\varphi (0)-\varphi (x)\right]/x&x\neq 0\\1/2&x=0\\\end{cases}}}$ Does not exist 0 0 Does not exist Does not exist Does not exist Does not exist ${\displaystyle {\sqrt {2\pi }}{\Big (}\varphi (t)+t\Phi (t)-\max\{t,0\}{\Big )}}$

In probability theory, the slash distribution is the probability distribution of a standard normal variate divided by an independent standard uniform variate.[1] In other words, if the random variable Z has a normal distribution with zero mean and unit variance, the random variable U has a uniform distribution on [0,1] and Z and U are statistically independent, then the random variable XZ / U has a slash distribution. The slash distribution is an example of a ratio distribution. The distribution was named by William H. Rogers and John Tukey in a paper published in 1972.[2]

The probability density function (pdf) is

${\displaystyle f(x)={\frac {\varphi (0)-\varphi (x)}{x^{2}}}.}$

where ${\displaystyle \varphi (x)}$ is the probability density function of the standard normal distribution.[3] The quotient is undefined at x = 0, but the discontinuity is removable:

${\displaystyle \lim _{x\to 0}f(x)={\frac {\varphi (0)}{2}}={\frac {1}{2{\sqrt {2\pi }}}}}$

The most common use of the slash distribution is in simulation studies. It is a useful distribution in this context because it has heavier tails than a normal distribution, but it is not as pathological as the Cauchy distribution.[3]

## References

1. ^ Davison, Anthony Christopher; Hinkley, D. V. (1997). Bootstrap methods and their application. Cambridge University Press. p. 484. ISBN 978-0-521-57471-6. Retrieved 24 September 2012.
2. ^ Rogers, W. H.; Tukey, J. W. (1972). "Understanding some long-tailed symmetrical distributions". Statistica Neerlandica. 26 (3): 211–226. doi:10.1111/j.1467-9574.1972.tb00191.x.
3. ^ a b "SLAPDF". Statistical Engineering Division, National Institute of Science and Technology. Retrieved 2009-07-02.

This article incorporates public domain material from the National Institute of Standards and Technology website https://www.nist.gov.