To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Langford pairing

From Wikipedia, the free encyclopedia

A Langford pairing for n = 4.

In combinatorial mathematics, a Langford pairing, also called a Langford sequence, is a permutation of the sequence of 2n numbers 1, 1, 2, 2, ..., n, n in which the two 1s are one unit apart, the two 2s are two units apart, and more generally the two copies of each number k are k units apart. Langford pairings are named after C. Dudley Langford, who posed the problem of constructing them in 1958.

Langford's problem is the task of finding Langford pairings for a given value of n.[1]

The closely related concept of a Skolem sequence[2] is defined in the same way, but instead permutes the sequence 0, 0, 1, 1, ..., n − 1, n − 1.

YouTube Encyclopedic

  • 1/3
    Views:
    550
    383
    2 395
  • RL Theory Seminar: Zhuoran Yang
  • Kin Fai Mak
  • Debrief Webinar 1

Transcription

Example

A Langford pairing for n = 3 is given by the sequence 2, 3, 1, 2, 1, 3.

Properties

Langford pairings exist only when n is congruent to 0 or 3 modulo 4; for instance, there is no Langford pairing when n = 1, 2, or 5.

The numbers of different Langford pairings for n = 1, 2, …, counting any sequence as being the same as its reversal, are

0, 0, 1, 1, 0, 0, 26, 150, 0, 0, 17792, 108144, 0, 0, 39809640, 326721800, 0, 0, 256814891280, 2636337861200, 0, 0, … (sequence A014552 in the OEIS).

As Knuth (2008) describes, the problem of listing all Langford pairings for a given n can be solved as an instance of the exact cover problem, but for large n the number of solutions can be calculated more efficiently by algebraic methods.

Applications

Skolem (1957) used Skolem sequences to construct Steiner triple systems.

In the 1960s, E. J. Groth used Langford pairings to construct circuits for integer multiplication.[3]

See also

Notes

References

  • Gardner, Martin (1978), "Langford's problem", Mathematical Magic Show, Vintage, p. 70.
  • Knuth, Donald E. (2008), The Art of Computer Programming, Vol. IV, Fascicle 0: Introduction to Combinatorial Algorithms and Boolean Functions, Addison-Wesley, ISBN 978-0-321-53496-5.
  • Langford, C. Dudley (1958), "Problem", Mathematical Gazette, 42: 228.
  • Nordh, Gustav (2008), "Perfect Skolem sets", Discrete Mathematics, 308 (9): 1653–1664, arXiv:math/0506155, doi:10.1016/j.disc.2006.12.003, MR 2392605.
  • Skolem, Thoralf (1957), "On certain distributions of integers in pairs with given differences", Mathematica Scandinavica, 5: 57–68, MR 0092797.

External links

This page was last edited on 14 June 2022, at 17:47
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.