To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Singular value

From Wikipedia, the free encyclopedia

In mathematics, in particular functional analysis, the singular values, or s-numbers of a compact operator T : XY acting between Hilbert spaces X and Y, are the square roots of non-negative eigenvalues of the self-adjoint operator T*T (where T* denotes the adjoint of T).

The singular values are non-negative real numbers, usually listed in decreasing order (s1(T), s2(T), …). The largest singular value s1(T) is equal to the operator norm of T (see Min-max theorem).

Visualisation of a singular value decomposition (SVD) of a 2-dimensional, real shearing matrix M. First, we see the unit disc in blue together with the two canonical unit vectors. We then see the action of M, which distorts the disc to an ellipse. The SVD decomposes M into three simple transformations: a rotation V*, a scaling Σ along the rotated coordinate axes and a second rotation U. Σ is a diagonal matrix containing in its diagonal the singular values of M, which represent the lengths σ1 and σ2 of the semi-axes of the ellipse.
Visualisation of a singular value decomposition (SVD) of a 2-dimensional, real shearing matrix M. First, we see the unit disc in blue together with the two canonical unit vectors. We then see the action of M, which distorts the disc to an ellipse. The SVD decomposes M into three simple transformations: a rotation V*, a scaling Σ along the rotated coordinate axes and a second rotation U. Σ is a diagonal matrix containing in its diagonal the singular values of M, which represent the lengths σ1 and σ2 of the semi-axes of the ellipse.

In the case that T acts on euclidean space Rn, there is a simple geometric interpretation for the singular values: Consider the image by T of the unit sphere; this is an ellipsoid, and the lengths of its semi-axes are the singular values of T (the figure provides an example in R2).

The singular values are the absolute values of the eigenvalues of a normal matrix A, because the spectral theorem can be applied to obtain unitary diagonalization of A as A = UΛU*. Therefore, .

Most norms on Hilbert space operators studied are defined using s-numbers. For example, the Ky Fan-k-norm is the sum of first k singular values, the trace norm is the sum of all singular values, and the Schatten norm is the pth root of the sum of the pth powers of the singular values. Note that each norm is defined only on a special class of operators, hence s-numbers are useful in classifying different operators.

In the finite-dimensional case, a matrix can always be decomposed in the form UΣV*, where U and V* are unitary matrices and Σ is a diagonal matrix with the singular values lying on the diagonal. This is the singular value decomposition.

YouTube Encyclopedic

  • 1/5
    Views:
    157 788
    115 149
    358 297
    570
    580
  • ✪ Singular Value Decomposition (the SVD)
  • ✪ Lecture 47 — Singular Value Decomposition | Stanford University
  • ✪ Singular matrices | Matrices | Precalculus | Khan Academy
  • ✪ Linear Algebra - Lecture 42 - The Singular Value Decomposition
  • ✪ L8B: The Structured Singular Value

Transcription

Contents

Basic properties

For and .

Min-max theorem for singular values. Here is a subspace of of dimension .

Matrix transpose and conjugate do not alter singular values.

For any unitary

Relation to eigenvalues:

Inequalities about singular values

See also [1].

Singular values of sub-matrices

For

  1. Let denote with one of its rows or columns deleted. Then
  2. Let denote with one of its rows and columns deleted. Then
  3. Let denote an submatrix of . Then

Singular values of

For

Singular values of

For

For [2]

Singular values and eigenvalues

For .

  1. See[3]
  2. Assume . Then for :
    1. Weyl's theorem
    2. For .

History

This concept was introduced by Erhard Schmidt in 1907. Schmidt called singular values "eigenvalues" at that time. The name "singular value" was first quoted by Smithies in 1937. In 1957, Allahverdiev proved the following characterization of the nth s-number [1]:

This formulation made it possible to extend the notion of s-numbers to operators in Banach space.

See also

References

  1. ^ R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991. Chap. 3
  2. ^ X. Zhan. Matrix Inequalities. Springer-Verlag, Berlin, Heidelberg, 2002. p.28
  3. ^ R. Bhatia. Matrix Analysis. Springer-Verlag, New York, 1997. Prop. III.5.1
  1. ^ I. C. Gohberg and M. G. Krein. Introduction to the Theory of Linear Non-selfadjoint Operators. American Mathematical Society, Providence, R.I.,1969. Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18.
This page was last edited on 14 June 2019, at 20:28
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.