To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Singular value

From Wikipedia, the free encyclopedia

In mathematics, in particular functional analysis, the singular values of a compact operator acting between Hilbert spaces and , are the square roots of the (necessarily non-negative) eigenvalues of the self-adjoint operator (where denotes the adjoint of ).

The singular values are non-negative real numbers, usually listed in decreasing order (σ1(T), σ2(T), …). The largest singular value σ1(T) is equal to the operator norm of T (see Min-max theorem).

Visualization of a singular value decomposition (SVD) of a 2-dimensional, real shearing matrix M. First, we see the unit disc in blue together with the two canonical unit vectors. We then see the action of M, which distorts the disc to an ellipse. The SVD decomposes M into three simple transformations: a rotation V*, a scaling Σ along the rotated coordinate axes and a second rotation U. Σ is a (square, in this example) diagonal matrix containing in its diagonal the singular values of M, which represent the lengths σ1 and σ2 of the semi-axes of the ellipse.

If T acts on Euclidean space , there is a simple geometric interpretation for the singular values: Consider the image by of the unit sphere; this is an ellipsoid, and the lengths of its semi-axes are the singular values of (the figure provides an example in ).

The singular values are the absolute values of the eigenvalues of a normal matrix A, because the spectral theorem can be applied to obtain unitary diagonalization of as . Therefore, .

Most norms on Hilbert space operators studied are defined using singular values. For example, the Ky Fan-k-norm is the sum of first k singular values, the trace norm is the sum of all singular values, and the Schatten norm is the pth root of the sum of the pth powers of the singular values. Note that each norm is defined only on a special class of operators, hence singular values can be useful in classifying different operators.

In the finite-dimensional case, a matrix can always be decomposed in the form , where and are unitary matrices and is a rectangular diagonal matrix with the singular values lying on the diagonal. This is the singular value decomposition.

YouTube Encyclopedic

  • 1/5
    Views:
    160 224
    23 361
    5 512
    111 280
    16 035
  • How to find Singular Value Decomposition quick and easy - Linear algebra explained right
  • Part 5: Singular Values and Singular Vectors
  • Singular Value Decomposition 1 - Linear Algebra - F12
  • Singular Value Decomposition (SVD): Mathematical Overview
  • Chapter 16 Problems, Singular Value Decomposition, SVD & Least Squares

Transcription

Basic properties

For , and .

Min-max theorem for singular values. Here is a subspace of of dimension .

Matrix transpose and conjugate do not alter singular values.

For any unitary

Relation to eigenvalues:

Relation to trace:

.

If is full rank, the product of singular values is .

If is full rank, the product of singular values is .

If is full rank, the product of singular values is .

Inequalities about singular values

See also.[1]

Singular values of sub-matrices

For

  1. Let denote with one of its rows or columns deleted. Then
  2. Let denote with one of its rows and columns deleted. Then
  3. Let denote an submatrix of . Then

Singular values of A + B

For

Singular values of AB

For

For [2]

Singular values and eigenvalues

For .

  1. See[3]
  2. Assume . Then for :
    1. Weyl's theorem
    2. For .

History

This concept was introduced by Erhard Schmidt in 1907. Schmidt called singular values "eigenvalues" at that time. The name "singular value" was first quoted by Smithies in 1937. In 1957, Allahverdiev proved the following characterization of the nth singular number:[4]

This formulation made it possible to extend the notion of singular values to operators in Banach space. Note that there is a more general concept of s-numbers, which also includes Gelfand and Kolmogorov width.

See also

References

  1. ^ R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991. Chap. 3
  2. ^ X. Zhan. Matrix Inequalities. Springer-Verlag, Berlin, Heidelberg, 2002. p.28
  3. ^ R. Bhatia. Matrix Analysis. Springer-Verlag, New York, 1997. Prop. III.5.1
  4. ^ I. C. Gohberg and M. G. Krein. Introduction to the Theory of Linear Non-selfadjoint Operators. American Mathematical Society, Providence, R.I.,1969. Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18.
This page was last edited on 30 November 2023, at 07:46
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.