To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Silver chlorite

From Wikipedia, the free encyclopedia

Silver chlorite
Names
IUPAC name
Silver chlorite
Other names
  • Silver(I) chlorite
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/Ag.ClHO2/c;2-1-3/h;(H,2,3)/q+1;/p-1
  • [O-]Cl=O.[Ag+]
Properties
AgClO2
Molar mass 175.32 g/mol
Appearance Slightly yellow solid
Melting point 156 °C (313 °F; 429 K)[2] (decomposes)
0.45 g/100ml[1]
2.1[2]
Structure[3]
Orthorhombic
Pcca
a = 6.075 Å, b = 6.689 Å, c = 6.123 Å
Thermochemistry
20.81 cal/deg[4]
32.16 cal/deg[4]
0.0 kcal/mol[1]
Hazards
GHS labelling:
GHS01: Explosive
Related compounds
Other anions
Silver chlorate
Silver perchlorate
Silver hypochlorite
Other cations
Sodium chlorite
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Silver chlorite is a chemical compound with the formula AgClO2. This slightly yellow solid is shock sensitive and has an orthorhombic crystal structure.

Preparation

Silver chlorite is prepared by the reaction of silver nitrate and sodium chlorite:[5]

AgNO3 + NaClO2 → AgClO2 + NaNO3

Reactions and properties

If normally heated, it explodes violently at 105 °C:[2]

AgClO2 → AgCl + O2

If heated very carefully, it decomposes at 156 °C to form silver chloride. It can also decompose to silver chlorate is chlorous acid is present.[2]

Silver chlorite reacts explosively with various substances such as sulfur and hydrochloric acid, forming silver chloride. It also gets reduced by sulfur dioxide, and reacts with sulfuric acid to form chlorine dioxide.[6] This compound explodes in contact with iodomethane and iodoethane.[7]

Silver chlorite complexes

Silver chlorite can react with anhydrous ammonia to form triammonia-silver chlorite:[6]

AgClO2 + 3NH3 → 3NH3·AgClO2

References

  1. ^ a b A. G. Massey; N. R. Thompson; B. F. G. Johnson (2016). The Chemistry of Copper, Silver and Gold (Ebook). Pergamon International Library of Science, Technology, Engineering and Social Studies: Elsevier Science. p. 108. ISBN 9781483181691.
  2. ^ a b c d F. Solymosi (1968). "The Thermal Stability and Some Physical Properties of Silver Chlorite, Chlorate and Perchlorate*". Zeitschrift für Physikalische Chemie. 57 (1). Oldenbourg Wissenschaftsverlag: 1–18. doi:10.1524/zpch.1968.57.1_2.001. S2CID 102195060.
  3. ^ M. Okuda; M. Ishihara; M. Yamanaka; S. Ohba; Y. Saito (1990). "Structures of lead chlorite, magnesium chlorite hexahydrate and silver chlorite". Acta Crystallogr. 46 (10): 1755–1759. Bibcode:1990AcCrC..46.1755O. doi:10.1107/S010827019000066X.
  4. ^ a b Wendell V. Smith; Kenneth S. Pitzer; Wendell M. Latimer (1937). "Silver Chlorite: Its Heat Capacity from 15 to 300K., Free Energy and Heat of Solution and Entropy. The Entropy of Chlorite Ion". J. Am. Chem. Soc. 59 (12): 2640–2642. doi:10.1021/ja01291a046.
  5. ^ J. Cooper; R. E. Marsh (1961). "On the structure of AgClO2". Acta Crystallogr. 14 (2): 202–203. Bibcode:1961AcCry..14..202C. doi:10.1107/S0365110X61000693.
  6. ^ a b Joseph William Mellor (1922). Supplement to Mellor's Comprehensive Treatise on Inorganic and Theoretical Chemistry: suppl. 3. K, Rb, Cs, Fr. University of Illinois at Urbana-Champaign: Longmans, Green and Company. p. 284.
  7. ^ Urben, Peter, ed. (2013). Bretherick's Handbook of Reactive Chemical Hazards. Elsevier Science. p. 4. ISBN 9780080523408.
This page was last edited on 29 March 2024, at 01:31
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.