To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Signal reconstruction

From Wikipedia, the free encyclopedia

In signal processing, reconstruction usually means the determination of an original continuous signal from a sequence of equally spaced samples.

This article takes a generalized abstract mathematical approach to signal sampling and reconstruction. For a more practical approach based on band-limited signals, see Whittaker–Shannon interpolation formula.

YouTube Encyclopedic

  • 1/3
    Views:
    5 287
    3 439
    97 763
  • Sampling and Reconstruction of Signals
  • Signal Reconstruction Tutorial
  • The Mathematics of Signal Processing | The z-transform, discrete signals, and more

Transcription

General principle

Let F be any sampling method, i.e. a linear map from the Hilbert space of square-integrable functions to complex space .

In our example, the vector space of sampled signals is n-dimensional complex space. Any proposed inverse R of F (reconstruction formula, in the lingo) would have to map to some subset of . We could choose this subset arbitrarily, but if we're going to want a reconstruction formula R that is also a linear map, then we have to choose an n-dimensional linear subspace of .

This fact that the dimensions have to agree is related to the Nyquist–Shannon sampling theorem.

The elementary linear algebra approach works here. Let (all entries zero, except for the kth entry, which is a one) or some other basis of . To define an inverse for F, simply choose, for each k, an so that . This uniquely defines the (pseudo-)inverse of F.

Of course, one can choose some reconstruction formula first, then either compute some sampling algorithm from the reconstruction formula, or analyze the behavior of a given sampling algorithm with respect to the given formula.

Ideally, the reconstruction formula is derived by minimizing the expected error variance. This requires that either the signal statistics is known or a prior probability for the signal can be specified. Information field theory is then an appropriate mathematical formalism to derive an optimal reconstruction formula.[1]

Popular reconstruction formulae

Perhaps the most widely used reconstruction formula is as follows. Let be a basis of in the Hilbert space sense; for instance, one could use the eikonal

,

although other choices are certainly possible. Note that here the index k can be any integer, even negative.

Then we can define a linear map R by

for each , where is the basis of given by

(This is the usual discrete Fourier basis.)

The choice of range is somewhat arbitrary, although it satisfies the dimensionality requirement and reflects the usual notion that the most important information is contained in the low frequencies. In some cases, this is incorrect, so a different reconstruction formula needs to be chosen.

A similar approach can be obtained by using wavelets instead of Hilbert bases. For many applications, the best approach is still not clear today.[original research?]

See also

References

  1. ^ "Information field theory". Max Planck Society. Retrieved 13 November 2014.
This page was last edited on 28 March 2023, at 02:35
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.