To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Shockley diode

From Wikipedia, the free encyclopedia

Shockley diode
InventedWilliam Shockley
Pin configuration Anode and Cathode
Electronic symbol
Shockley diode schematic symbol
A sculpture representing a Shockley 4-layer diode, on the sidewalk in front of the new building at 391 San Antonio Rd., Mountain View, California, which was the original site of the Shockley Semiconductor Laboratories where the first silicon device work in Silicon Valley was done

The Shockley diode (named after physicist William Shockley) is a four-layer semiconductor diode, which was one of the first semiconductor devices invented. It is a PNPN diode with alternating layers of P-type and N-type material. It is equivalent to a thyristor with a disconnected gate. Shockley diodes were manufactured and marketed by Shockley Semiconductor Laboratory in the late 1950s. The Shockley diode has a negative resistance characteristic.[1] It was largely superseded by the diac.

YouTube Encyclopedic

  • 1/3
    Views:
    790
    1 552 465
    22 050
  • The Shockley Diode--Utsource
  • DIODES! All Sorts of Them and How They Work (ElectroBOOM101-010)
  • What is PNPN Diode or Shockley Diode | Thyristors | Electronic Devices & Circuits

Transcription

Working

Diagram of a shockley diode
Unlike other semiconductor diodes, the Shockley diode has more than one PN junction. The construction includes four sections of semiconductors placed alternately between the anode and cathode in the pattern of PNPN. Though it has multiple junctions, it is termed a diode for being a two-terminal device.

The Shockley diode remains in an OFF state, with a very high resistance, until a voltage greater than the trigger voltage is applied across its terminals. When the voltage exceeds the trigger value, the resistance drops to an extremely low value and the device switches ON. The constituent transistors help in maintaining the ON and OFF states. Since the construction resembles a pair of interconnected bipolar transistors, one PNP and other NPN, neither transistor can turn ON until the other is turned ON due to the absence of any current through the base-emitter junction. Once sufficient voltage is applied and one of the transistors breaks down, it starts conducting and allows base current to flow through the other transistor, resulting in saturation of both the transistors, keeping both in ON state.

On reducing the voltage to a sufficiently low level, the current flowing becomes insufficient to maintain the transistor bias. Due to insufficient current, one of the transistors will cut off, interrupting the base current to the other transistor, hence sealing both transistors in the OFF state.

Usages

Common applications:

Niche applications:

Typical values

V–I diagram
Description Range[4] Typically
Forward operation
Switching voltage Vs 10 V to 250 V 50 V ± 4 V
Holding voltage Vh 0.5 V to 2 V 0.8 V
Switching current Is a few μA to some mA 120 μA
Hold current IH 1 to 50 mA 14 to 45 mA
Reverse operation
Reverse current IR 15 μA
Reverse breakdown voltage Vrb 10 V to 250 V 60 V

Dynistor

Dynistor

Small-signal Shockley diodes are no longer manufactured, but the unidirectional thyristor breakover diode, also known as the dynistor, is a functionally equivalent power device. An early publication about dynistors was published in 1958.[5] In 1988 the first dynistor using silicon carbide was made.[6] Dynistors can be used as switches in micro- and nanosecond power pulse generators.[7]

References

  • Michael Riordan and Lillian Hoddeson; Crystal Fire: The Invention of the Transistor and the Birth of the Information Age. New York: Norton (1997) ISBN 0-393-31851-6 pbk.
  1. ^ "Transistor Museum Photo Gallery Shockley Diode 4 LayerTransistor". semiconductormuseum.com. Retrieved 2019-04-09.
  2. ^ "Transistor Museum Photo Gallery Shockley Diode Transistor 4 Layer". semiconductormuseum.com. Retrieved 2019-04-09.
  3. ^ "Just Diodes In Hi-Fi Amplifier". 2007-02-21. Archived from the original on 2007-02-21. Retrieved 2019-04-09.
  4. ^ Willfried Schurig (1971), amateurreihe electronica: Kennlinien elektronischer Bauelemente. Teil II: Halbleiter Dioden (in German), Berlin: Deutscher Militärverlag, p. 119
  5. ^ Pittman, P. (Spring 1958). The application of the dynistor diode to off-on controllers. 1958 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. Vol. I. pp. 55–56. doi:10.1109/ISSCC.1958.1155602.
  6. ^ Chelnokov, V. E.; Vainshtein, S. N.; Levinshtein, M. E.; Dmitriev, V. A. (1988-08-04). "First SiC dynistor". Electronics Letters. 24 (16): 1031–1033. doi:10.1049/el:19880702. ISSN 1350-911X.
  7. ^ Aristov, Yu.V.; Grekhov, I.V.; Korotkov, S.V.; Lyublinsky, A.G. (September 22–26, 2008). "Dynistor Switches for Micro- and Nanosecond Power Pulse Generators". Acta Physica Polonica A. 115 (6). Proceedings of the 2nd Euro-Asian Pulsed Power Conference, Vilnius, Lithuania, September 22–26, 2008: 1031–1033. doi:10.12693/APhysPolA.115.1031.


This page was last edited on 25 July 2024, at 18:06
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.