To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Group-like structures
Totalityα Associativity Identity Divisibilityβ Commutativity
Partial magma Unneeded Unneeded Unneeded Unneeded Unneeded
Semigroupoid Unneeded Required Unneeded Unneeded Unneeded
Small category Unneeded Required Required Unneeded Unneeded
Groupoid Unneeded Required Required Required Unneeded
Magma Required Unneeded Unneeded Unneeded Unneeded
Quasigroup Required Unneeded Unneeded Required Unneeded
Unital magma Required Unneeded Required Unneeded Unneeded
Loop Required Unneeded Required Required Unneeded
Semigroup Required Required Unneeded Unneeded Unneeded
Associative quasigroup Required Required Unneeded Required Unneeded
Monoid Required Required Required Unneeded Unneeded
Commutative monoid Required Required Required Unneeded Required
Group Required Required Required Required Unneeded
Abelian group Required Required Required Required Required
The closure axiom, used by many sources and defined differently, is equivalent.
Here, divisibility refers specifically to the quasigroup axioms.

In mathematics, a semigroupoid (also called semicategory, naked category or precategory) is a partial algebra that satisfies the axioms for a small[1][2][3] category, except possibly for the requirement that there be an identity at each object. Semigroupoids generalise semigroups in the same way that small categories generalise monoids and groupoids generalise groups. Semigroupoids have applications in the structural theory of semigroups.

Formally, a semigroupoid consists of:

  • a set of things called objects.
  • for every two objects A and B a set Mor(A,B) of things called morphisms from A to B. If f is in Mor(A,B), we write f : AB.
  • for every three objects A, B and C a binary operation Mor(A,B) × Mor(B,C) → Mor(A,C) called composition of morphisms. The composition of f : AB and g : BC is written as gf or gf. (Some authors write it as fg.)

such that the following axiom holds:

  • (associativity) if f : AB, g : BC and h : CD then h ∘ (gf) = (hg) ∘ f.

YouTube Encyclopedic

  • 1/3
    Views:
    396 847
    1 369
    2 712
  • Group Theory | Semi-Group , Monoid | Abelian Group | Discrete Mathematics
  • #groupoid #semi group #monoid #Group #abelian group in one video learn about all
  • Groupoid, Semi group , Monoid, Group , Abelian group - lecture 35/ discrete mathematics

Transcription

References

  1. ^ Tilson, Bret (1987). "Categories as algebra: an essential ingredient in the theory of monoids". J. Pure Appl. Algebra. 48 (1–2): 83–198. doi:10.1016/0022-4049(87)90108-3., Appendix B
  2. ^ Rhodes, John; Steinberg, Ben (2009), The q-Theory of Finite Semigroups, Springer, p. 26, ISBN 9780387097817
  3. ^ See e.g. Gomes, Gracinda M. S. (2002), Semigroups, Algorithms, Automata and Languages, World Scientific, p. 41, ISBN 9789812776884, which requires the objects of a semigroupoid to form a set.


This page was last edited on 12 August 2023, at 23:06
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.