To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Self-verifying theories

From Wikipedia, the free encyclopedia

Self-verifying theories are consistent first-order systems of arithmetic, much weaker than Peano arithmetic, that are capable of proving their own consistency. Dan Willard was the first to investigate their properties, and he has described a family of such systems. According to Gödel's incompleteness theorem, these systems cannot contain the theory of Peano arithmetic nor its weak fragment Robinson arithmetic; nonetheless, they can contain strong theorems.

In outline, the key to Willard's construction of his system is to formalise enough of the Gödel machinery to talk about provability internally without being able to formalise diagonalisation. Diagonalisation depends upon being able to prove that multiplication is a total function (and in the earlier versions of the result, addition also). Addition and multiplication are not function symbols of Willard's language; instead, subtraction and division are, with the addition and multiplication predicates being defined in terms of these. Here, one cannot prove the  sentence expressing totality of multiplication:

where is the three-place predicate which stands for When the operations are expressed in this way, provability of a given sentence can be encoded as an arithmetic sentence describing termination of an analytic tableau. Provability of consistency can then simply be added as an axiom. The resulting system can be proven consistent by means of a relative consistency argument with respect to ordinary arithmetic.

One can further add any true sentence of arithmetic to the theory while still retaining consistency of the theory.

References

External links

This page was last edited on 4 January 2023, at 02:10
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.