To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Secant variety

From Wikipedia, the free encyclopedia

In algebraic geometry, the secant variety , or the variety of chords, of a projective variety is the Zariski closure of the union of all secant lines (chords) to V in :[1]

(for , the line is the tangent line.) It is also the image under the projection of the closure Z of the incidence variety

.

Note that Z has dimension and so has dimension at most .

More generally, the secant variety is the Zariski closure of the union of the linear spaces spanned by collections of k+1 points on . It may be denoted by . The above secant variety is the first secant variety. Unless , it is always singular along , but may have other singular points.

If has dimension d, the dimension of is at most . A useful tool for computing the dimension of a secant variety is Terracini's lemma.

Examples

A secant variety can be used to show the fact that a smooth projective curve can be embedded into the projective 3-space as follows.[2] Let be a smooth curve. Since the dimension of the secant variety S to C has dimension at most 3, if , then there is a point p on that is not on S and so we have the projection from p to a hyperplane H, which gives the embedding . Now repeat.

If is a surface that does not lie in a hyperplane and if , then S is a Veronese surface.[3]

References

  • Eisenbud, David; Joe, Harris (2016), 3264 and All That: A Second Course in Algebraic Geometry, C. U.P., ISBN 978-1107602724
  • Griffiths, P.; Harris, J. (1994). Principles of Algebraic Geometry. Wiley Classics Library. Wiley Interscience. p. 617. ISBN 0-471-05059-8.
  • Joe Harris, Algebraic Geometry, A First Course, (1992) Springer-Verlag, New York. ISBN 0-387-97716-3


This page was last edited on 21 February 2022, at 19:39
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.