To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Schmidt–Newtonian telescope

From Wikipedia, the free encyclopedia

Schmidt–Newtonian telescope.

A Schmidt–Newtonian telescope or Schmidt–Newton telescope is a catadioptric telescope that combines elements from both the Schmidt camera and the Newtonian telescope. In this telescope design, a spherical primary mirror is combined with a Schmidt corrector plate, which corrects the spherical aberration and holds the secondary mirror. The resulting system has less coma and diffraction effects than a Newtonian telescope with a parabolic mirror (which is free of spherical aberration but not free of coma) and a "spider" secondary mirror support.[1] The design uses a 45° flat secondary mirror to view the image, as in a standard Newtonian telescope.

Advantages

Schmidt–Newtonian telescope from Meade

Schmidt–Newtonian telescopes offer images with less coma than Newtonian telescopes of the same focal ratio (usually about half). The corrector plate also helps to seal the tube assembly from air currents, and provides mounting point for the diagonal mirror, eliminating the diffraction effects from a "spider" secondary support. The all-spherical surfaces are much easier to manufacture, especially in short focal ratios. Telescopes using this design typically have a short focal ratio of around f/4, making them well suited for astrophotography or CCD imaging. Schmidt–Newtonians also typically cost less than the more commonly produced Schmidt–Cassegrain telescopes since they don't have the added curved secondary mirror or the complicated primary mirror focusing mechanism found in most Schmidt–Cassegrain designs.[1]

See also

References

  1. ^ a b "Schmidt-Newton telescope". telescopeOptics.net. Retrieved 28 August 2012.

External links

This page was last edited on 23 July 2023, at 16:41
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.