To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Sarrus linkage

From Wikipedia, the free encyclopedia

Animation of the Sarrus Linkage.
  Plates (can be any shape)
  Bars (can be at any angle with each other except a multiple of 180°)
A demonstration using planar links instead of bar links.

The Sarrus linkage, invented in 1853 by Pierre Frédéric Sarrus,[1] is a mechanical linkage to convert a limited circular motion to a linear motion or vice versa[2] without reference guideways. It is a spatial six-bar linkage (6R) with two groups of three parallel adjacent joint-axes.[3]

Although Charles-Nicolas Peaucellier was widely recognized for being the first to invent such a straight-line mechanism, the Sarrus linkage had been invented earlier; however, it was largely unnoticed for a time.[4]

YouTube Encyclopedic

  • 1/3
    Views:
    9 819
    1 406
    591
  • Sarrus Linkage Mechanism Animation
  • Sarrus Linkage
  • ☑️ Sarrus linkage mechanism - Ansys workbench

Transcription

Description

The Sarrus linkage consists of four links in two identical groups that are perpendicular to each other, with all links having equal lengths.[5] In the examples shown, the linkage uses two horizontal plates (cyan) positioned parallel to each other, one above the other. Pairs of bars or plates (yellow) with hinges at the middle connect the horizontal plates. The upper plate moves vertically up and down, towards and away from the lower plate. Each hinge constrains the attached bars or plates to remain in the same plane as the hinge, and also to remain in the same axial translation.

The Sarrus linkage is of a three-dimensional class sometimes known as a space crank, unlike the Peaucellier–Lipkin linkage which is a planar mechanism. One of its main advantages is that it can be used to lift the structure connecting the upper links, allowing an impressive range of movements.[5] According to mobility analysis, the Degree of Freedom 2-sided Sarrus linkage is 0. However, due to overconstrain, the upper platform can move up and down.

Gallery

See also

References

  1. ^ Waldron, Kenneth; Kinzel, Gary; Agrawal, Sunil (2016). Kinematics, Dynamics, and Design of Machinery. West Sussex, UK: John Wiley & Sons. p. 367. ISBN 9781118933282.
  2. ^ Koetsier, Teun; Ceccarelli, Marco (2012). Explorations in the History of Machines and Mechanisms: Proceedings of HMM2012. Dordrecht: Springer Science & Business Media. p. 537. ISBN 9789400741317.
  3. ^ Ding, Xilun; Kong, Xianwen; Dai, Jian (2015). Advances in Reconfigurable Mechanisms and Robots II. Cham, Switzerland: Springer. p. 107. ISBN 9783319233260.
  4. ^ pergatory.mit.edu Archived 2007-02-10 at the Wayback Machine – Sarrus' mechanism
  5. ^ a b Kmiec, Pawel Sariel (2012). The Unofficial LEGO Technic Builder's Guide. San Francisco, California: No Starch Press. p. 74. ISBN 9781593274344.

External links


This page was last edited on 1 June 2023, at 20:51
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.