To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

# Rouché–Capelli theorem

The RouchéCapelli theorem is a theorem in linear algebra that determines the number of solutions for a system of linear equations, given the rank of its augmented matrix and coefficient matrix. The theorem is variously known as the:

## Formal statement

A system of linear equations with n variables has a solution if and only if the rank of its coefficient matrix A is equal to the rank of its augmented matrix [A|b].[1] If there are solutions, they form an affine subspace of ${\displaystyle \mathbb {R} ^{n}}$ of dimension n − rank(A). In particular:

• if n = rank(A), the solution is unique,
• otherwise there are infinitely many solutions.

## Example

Consider the system of equations

x + y + 2z = 3,
x + y + z = 1,
2x + 2y + 2z = 2.

The coefficient matrix is

${\displaystyle A={\begin{bmatrix}1&1&2\\1&1&1\\2&2&2\\\end{bmatrix}},}$

and the augmented matrix is

${\displaystyle (A|B)=\left[{\begin{array}{ccc|c}1&1&2&3\\1&1&1&1\\2&2&2&2\end{array}}\right].}$

Since both of these have the same rank, namely 2, there exists at least one solution; and since their rank is less than the number of unknowns, the latter being 3, there are infinitely many solutions.

In contrast, consider the system

x + y + 2z = 3,
x + y + z = 1,
2x + 2y + 2z = 5.

The coefficient matrix is

${\displaystyle A={\begin{bmatrix}1&1&2\\1&1&1\\2&2&2\\\end{bmatrix}},}$

and the augmented matrix is

${\displaystyle (A|B)=\left[{\begin{array}{ccc|c}1&1&2&3\\1&1&1&1\\2&2&2&5\end{array}}\right].}$

In this example the coefficient matrix has rank 2, while the augmented matrix has rank 3; so this system of equations has no solution. Indeed, an increase in the number of linearly independent columns has made the system of equations inconsistent.