To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

From Wikipedia, the free encyclopedia

The roll center of a vehicle is the notional point at which the cornering forces in the suspension are reacted to the vehicle body.

There are two definitions of roll center. The most commonly used is the geometric (or kinematic) roll center; the Society of Automotive Engineers uses a force-based definition.[1]

The location of the geometric roll center is solely dictated by the suspension geometry, and can be found using principles of the instant center of rotation. The SAE's definition of the force based roll center is, "The point in the transverse vertical plane through any pair of wheel centers at which lateral forces may be applied to the sprung mass without producing suspension roll".

The lateral location of the roll center is typically at the center-line of the vehicle when the suspension on the left and right sides of the car are mirror images of each other.

The significance of the roll center can only be appreciated when the vehicle's center of mass is also considered. If there is a difference between the position of the center of mass and the roll center a moment arm is created. When the vehicle experiences angular velocity due to cornering, the size of the moment arm, combined with the stiffness of the springs and anti-roll bars (anti-sway bars in some parts of the world), dictates how much the vehicle will roll. This has other effects too, such as dynamic load transfer. When we join front and rear roll centers then we get an axis about which the vehicle rolls. The roll of a vehicle also depends upon the location of the roll center from the Center of Gravity, which is also called as roll moment.


When the vehicle rolls the roll centers migrate. It is this movement of roll centers that vehicle dynamics seek to control and in most cases limit[citation needed]. The rapid movement of roll centers when the system experiences small displacements can lead to stability problems with the vehicle[citation needed]. The roll center height has been shown to affect behavior at the initiation of turns such as nimbleness and initial roll control.

Testing methods

Current methods of analyzing individual wheel instant centers have yielded more intuitive results of the effects of non-rolling weight transfer effects. This type of analysis is better known as the lateral-anti method. This is where one takes the individual instant center locations of each corner of the car and then calculates the resultant vertical reaction vector due to lateral force. This value then is taken into account in the calculation of a jacking force and lateral weight transfer. This method works particularly well in circumstances where there are asymmetries in left to right suspension geometry.

The practical equivalent of the above is to push laterally at the tire contact patch and measure the ratio of the change in vertical load to the horizontal force.

See also


  1. ^ An Introduction to Modern Vehicle Design edited by Julian Happian-Smith P293
This page was last edited on 15 November 2020, at 07:53
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.