To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Algebraic normal form

From Wikipedia, the free encyclopedia

In Boolean algebra, the algebraic normal form (ANF), ring sum normal form (RSNF or RNF), Zhegalkin normal form, or Reed–Muller expansion is a way of writing propositional logic formulas in one of three subforms:

  • The entire formula is purely true or false:
  • One or more variables are combined into a term by AND (), then one or more terms are combined by XOR () together into ANF. Negations are not permitted:
  • The previous subform with a purely true term:

Formulas written in ANF are also known as Zhegalkin polynomials and Positive Polarity (or Parity) Reed–Muller expressions (PPRM).[1]

YouTube Encyclopedic

  • 1/5
    Views:
    40 844
    66 944
    36 661
    2 451 742
    1 130 892
  • Conjunctive Normal Form (CNF) and Disjunctive Normal Form (DNF) - Logic
  • Jordan Normal Form - Part 1 - Overview
  • Canonical Representation of a Boolean Function
  • Algebra Basics: The Distributive Property - Math Antics
  • Sum of Products (Part 1) | SOP Form

Transcription

Common uses

ANF is a canonical form, which means that two logically equivalent formulas will convert to the same ANF, easily showing whether two formulas are equivalent for automated theorem proving. Unlike other normal forms, it can be represented as a simple list of lists of variable names—conjunctive and disjunctive normal forms also require recording whether each variable is negated or not. Negation normal form is unsuitable for determining equivalence, since on negation normal forms, equivalence does not imply equality: a ∨ ¬a is not reduced to the same thing as 1, even though they are logically equivalent.

Putting a formula into ANF also makes it easy to identify linear functions (used, for example, in linear-feedback shift registers): a linear function is one that is a sum of single literals. Properties of nonlinear-feedback shift registers can also be deduced from certain properties of the feedback function in ANF.

Performing operations within algebraic normal form

There are straightforward ways to perform the standard boolean operations on ANF inputs in order to get ANF results.

XOR (logical exclusive disjunction) is performed directly:

(1 ⊕ x) ⊕ (1 ⊕ x ⊕ y)
1 ⊕ x1 ⊕ x ⊕ y
1 ⊕ 1 ⊕ x ⊕ x ⊕ y
y

NOT (logical negation) is XORing 1:[2]

¬(1 ⊕ x ⊕ y)
1 ⊕(1 ⊕ x ⊕ y)
1 ⊕ 1 ⊕ x ⊕ y
x ⊕ y

AND (logical conjunction) is distributed algebraically[3]

(1x)(1 ⊕ x ⊕ y)
1(1 ⊕ x ⊕ y)x(1 ⊕ x ⊕ y)
(1 ⊕ x ⊕ y) ⊕ (x ⊕ x ⊕ xy)
1 ⊕ x ⊕ x ⊕ x ⊕ y ⊕ xy
1 ⊕ x ⊕ y ⊕ xy

OR (logical disjunction) uses either 1 ⊕ (1 ⊕ a)(1 ⊕ b)[4] (easier when both operands have purely true terms) or a ⊕ b ⊕ ab[5] (easier otherwise):

(1 ⊕ x) + (1 ⊕ x ⊕ y)
1 ⊕ (1 ⊕ 1 ⊕ x)(1 ⊕ 1 ⊕ x ⊕ y)
1 ⊕ x(x ⊕ y)
1 ⊕ x ⊕ xy

Converting to algebraic normal form

Each variable in a formula is already in pure ANF, so one only needs to perform the formula's boolean operations as shown above to get the entire formula into ANF. For example:

x + (y ⋅ ¬z)
x + (y(1 ⊕ z))
x + (y ⊕ yz)
x ⊕ (y ⊕ yz) ⊕ x(y ⊕ yz)
x ⊕ y ⊕ xy ⊕ yz ⊕ xyz

Formal representation

ANF is sometimes described in an equivalent way:

where fully describes .

Recursively deriving multiargument Boolean functions

There are only four functions with one argument:

To represent a function with multiple arguments one can use the following equality:

, where

Indeed,

  • if then and so
  • if then and so

Since both and have fewer arguments than it follows that using this process recursively we will finish with functions with one variable. For example, let us construct ANF of (logical or):

  • since and
  • it follows that
  • by distribution, we get the final ANF:

See also

References

  1. ^ Steinbach, Bernd [in German]; Posthoff, Christian (2009). "Preface". Logic Functions and Equations - Examples and Exercises (1st ed.). Springer Science + Business Media B. V. p. xv. ISBN 978-1-4020-9594-8. LCCN 2008941076.
  2. ^ WolframAlpha NOT-equivalence demonstration: ¬a = 1 ⊕ a
  3. ^ WolframAlpha AND-equivalence demonstration: (a ⊕ b)(c ⊕ d) = ac ⊕ ad ⊕ bc ⊕ bd
  4. ^ From De Morgan's laws
  5. ^ WolframAlpha OR-equivalence demonstration: a + b = a ⊕ b ⊕ ab

Further reading

This page was last edited on 14 April 2024, at 16:10
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.