To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Rigid analytic space

From Wikipedia, the free encyclopedia

Tate m’a écrit de son côté sur ses histoires de courbes elliptiques, et pour me demander si j’avais des idées sur une définition globale des variétés analytiques sur des corps complets. Je dois avouer que je n’ai pas du tout compris pourquoi ses résultats suggéreraient l’existence d’une telle définition, et suis encore sceptique.

Alexander Grothendieck in a 1959 August 18 letter to Jean-Pierre Serre, expressing skepticism about the existence of John Tate's theory of global analytic varieties over complete fields

In mathematics, a rigid analytic space is an analogue of a complex analytic space over a nonarchimedean field. Such spaces were introduced by John Tate in 1962, as an outgrowth of his work on uniformizing p-adic elliptic curves with bad reduction using the multiplicative group. In contrast to the classical theory of p-adic analytic manifolds, rigid analytic spaces admit meaningful notions of analytic continuation and connectedness.

YouTube Encyclopedic

  • 1/3
    Views:
    515 007
    2 019
    53 874
  • Introduction to transformations | Transformations | Geometry | Khan Academy
  • Ahlfors Bers 2014 "The complex geometry of Teichmüller space and symmetric domains"
  • Another example of rigid transformations for congruence | Congruence | Geometry | Khan Academy

Transcription

Definitions

The basic rigid analytic object is the n-dimensional unit polydisc, whose ring of functions is the Tate algebra , made of power series in n variables whose coefficients approach zero in some complete nonarchimedean field k. The Tate algebra is the completion of the polynomial ring in n variables under the Gauss norm (taking the supremum of coefficients), and the polydisc plays a role analogous to that of affine n-space in algebraic geometry. Points on the polydisc are defined to be maximal ideals in the Tate algebra, and if k is algebraically closed, these correspond to points in whose coordinates have norm at most one.

An affinoid algebra is a k-Banach algebra that is isomorphic to a quotient of the Tate algebra by an ideal. An affinoid is then the subset of the unit polydisc on which the elements of this ideal vanish, i.e., it is the set of maximal ideals containing the ideal in question. The topology on affinoids is subtle, using notions of affinoid subdomains (which satisfy a universality property with respect to maps of affinoid algebras) and admissible open sets (which satisfy a finiteness condition for covers by affinoid subdomains). In fact, the admissible opens in an affinoid do not in general endow it with the structure of a topological space, but they do form a Grothendieck topology (called the G-topology), and this allows one to define good notions of sheaves and gluing of spaces.

A rigid analytic space over k is a pair describing a locally ringed G-topologized space with a sheaf of k-algebras, such that there is a covering by open subspaces isomorphic to affinoids. This is analogous to the notion of manifolds being coverable by open subsets isomorphic to euclidean space, or schemes being coverable by affines. Schemes over k can be analytified functorially, much like varieties over the complex numbers can be viewed as complex analytic spaces, and there is an analogous formal GAGA theorem. The analytification functor respects finite limits.

Other formulations

Around 1970, Michel Raynaud provided an interpretation of certain rigid analytic spaces as formal models, i.e., as generic fibers of formal schemes over the valuation ring R of k. In particular, he showed that the category of quasi-compact quasi-separated rigid spaces over k is equivalent to the localization of the category of quasi-compact admissible formal schemes over R with respect to admissible formal blow-ups. Here, a formal scheme is admissible if it is coverable by formal spectra of topologically finitely presented R algebras whose local rings are R-flat.

Formal models suffer from a problem of uniqueness, since blow-ups allow more than one formal scheme to describe the same rigid space. Huber worked out a theory of adic spaces to resolve this, by taking a limit over all blow-ups. These spaces are quasi-compact, quasi-separated, and functorial in the rigid space, but lack a lot of nice topological properties.

Vladimir Berkovich reformulated much of the theory of rigid analytic spaces in the late 1980s, using a generalization of the notion of Gelfand spectrum for commutative unital C*-algebras. The Berkovich spectrum of a Banach k-algebra A is the set of multiplicative semi-norms on A that are bounded with respect to the given norm on k, and it has a topology induced by evaluating these semi-norms on elements of A. Since the topology is pulled back from the real line, Berkovich spectra have many nice properties, such as compactness, path-connectedness, and metrizability. Many ring-theoretic properties are reflected in the topology of spectra, e.g., if A is Dedekind, then its spectrum is contractible. However, even very basic spaces tend to be unwieldy – the projective line over Cp is a compactification of the inductive limit of affine Bruhat–Tits buildings for PGL2(F), as F varies over finite extensions of Qp, when the buildings are given a suitably coarse topology.

See also

References

  • Non-Archimedean analysis by S. Bosch, U. Güntzer, R. Remmert ISBN 3-540-12546-9
  • Brian Conrad Several approaches to non-archimedean geometry lecture notes from the Arizona Winter School
  • Rigid Analytic Geometry and Its Applications (Progress in Mathematics) by Jean Fresnel, Marius van der Put ISBN 0-8176-4206-4
  • Houzel, Christian (1995) [1966], Espaces analytiques rigides (d'après R. Kiehl), Séminaire Bourbaki, Exp. No. 327, vol. 10, Paris: Société Mathématique de France, pp. 215–235, MR 1610409
  • Tate, John (1971) [1962], "Rigid analytic spaces", Inventiones Mathematicae, 12 (4): 257–289, doi:10.1007/BF01403307, ISSN 0020-9910, MR 0306196, S2CID 121364708
  • Éléments de Géométrie Rigide. Volume I. Construction et étude géométrique des espaces rigides (Progress in Mathematics 286) by Ahmed Abbes, ISBN 978-3-0348-0011-2
  • Michel Raynaud, Géométrie analytique rigide d’après Tate, Kiehl,. . .  Table ronde d’analyse non archimidienne, Bull. Soc. Math. Fr. Mém. 39/40 (1974), 319-327.

External links

This page was last edited on 12 April 2022, at 19:08
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.