To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Rhenium trioxide

From Wikipedia, the free encyclopedia

Rhenium trioxide
IUPAC name
Rhenium trioxide
Other names
3D model (JSmol)
ECHA InfoCard 100.013.845
EC Number
  • 215-228-8
Molar mass 234.205 g/mol
Appearance Deep red crystals
Density 6.92 g/cm3
Melting point 400 °C (752 °F; 673 K) (decomposes)
+16.0·10−6 cm3/mol
Cubic, cP4
Pm3m, SpaceGroup = 221
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references
ReO3 polyhedra
ReO3 polyhedra

Rhenium trioxide or rhenium(VI) oxide is an inorganic compound with the formula ReO3. It is a red solid with a metallic lustre, which resembles copper in appearance. It is the only stable trioxide of the Group 7 elements (Mn, Tc, Re).

Preparation, structure

Rhenium trioxide can be formed by reducing rhenium(VII) oxide with carbon monoxide. [1]

Re2O7 + CO → 2 ReO3 + CO2

Re2O7 can also be reduced with dioxane.[2]

Rhenium oxide crystallizes with a primitive cubic unit cell, with a lattice parameter of 3.742 Å (374.2 pm). The structure of ReO3 is similar to that of perovskite (ABO3), without the large A cation at the centre of the unit cell. Each rhenium center is surrounded by an octahedron defined by six oxygen centers. These octahedra share corners to form the 3-dimensional structure. The coordination number of O is 2 because each oxygen atom has 2 neighbouring Re atoms.[3]


Upon heating to 400 °C under vacuum, it undergoes disproportionation:[2]

3 ReO3 → Re2O7 + ReO2

ReO3 is unusual for an oxide because it exhibits very low resistivity. It behaves like a metal in that its resistivity decreases as its temperature decreases. At 300 K, its resistivity is 100.0 nΩ·m, whereas at 100 K, this decreases to 6.0 nΩ·m, 17 times less than at 300 K.[3]


Hydrogenation Catalyst

Rhenium trioxide finds some use in organic synthesis as a catalyst for amide reduction.[4]


  1. ^ H. Nechamkin, C. F. Hiskey, "Rhenium(VI): Oxide (Rhenium Trioxide)" Inorganic Syntheses, 1950 Volume 3, pp. 186-188. doi:10.1002/9780470132340.ch49
  2. ^ a b G. Glemser "Rhenium (VI) Oxide" Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 2. p. 1482.
  3. ^ a b Greenwood, Norman  N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8., p. 1047.
  4. ^ Nishimura, Shigeo (2001). Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis (1st ed.). Newyork: Wiley-Interscience. p. 408. ISBN 9780471396987.
This page was last edited on 18 February 2017, at 08:13
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.