To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Resolvability criterion

From Wikipedia, the free encyclopedia

Resolvability criterion can refer to any voting system criterion that ensures a low possibility of tie votes.

  • In Nicolaus Tideman's version of the criterion, for every (possibly tied) winner in a result, there must exist a way for one added vote to make that winner unique.
  • Douglas R. Woodall's version requires that the proportion of profiles giving a tie approaches zero as the number of voters increases toward infinity.

Methods that satisfy both versions include approval voting, range voting, Borda count, instant-runoff voting, minimax Condorcet, plurality, Tideman's ranked pairs,[1] and Schulze.[2]

Methods that violate both versions include Copeland's method and the Slater rule.[citation needed]

References

  1. ^ "Proof MAM is resolvable and reasonably deterministic". alumnus.caltech.edu. Retrieved 2018-07-21.
  2. ^ Schulze, Markus (3 March 2017). "A New Monotonic, Clone-Independent, Reversal Symmetric, and Condorcet-Consistent Single-Winner Election Method" (PDF).
This page was last edited on 4 September 2021, at 11:13
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.