To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Relative neighborhood graph

From Wikipedia, the free encyclopedia

The relative neighborhood graph of 100 random points in a unit square.

In computational geometry, the relative neighborhood graph (RNG) is an undirected graph defined on a set of points in the Euclidean plane by connecting two points and by an edge whenever there does not exist a third point that is closer to both and than they are to each other. This graph was proposed by Godfried Toussaint in 1980 as a way of defining a structure from a set of points that would match human perceptions of the shape of the set.[1][2]

YouTube Encyclopedic

  • 1/3
    Views:
    7 207
    8 720
    1 152
  • Graph-Based Approximate Nearest Neighbors (ANN) and HNSW
  • Graph Theory: Nearest Neighbor Algorithm
  • Principal Neighbourhood Aggregation for Graph Nets | AISC

Transcription

Algorithms

Supowit (1983) showed how to construct the relative neighborhood graph of points in the plane efficiently in time.[3] It can be computed in expected time, for random set of points distributed uniformly in the unit square.[4] The relative neighborhood graph can be computed in linear time from the Delaunay triangulation of the point set.[5][6]

Generalizations

Because it is defined only in terms of the distances between points, the relative neighborhood graph can be defined for point sets in any dimension,[1][7][8] and for non-Euclidean metrics.[1][5][9][10] Computing the relative neighborhood graph, for higher-dimensional point sets, can be done in time .

Related graphs

The relative neighborhood graph is an example of a lens-based beta skeleton. It is a subgraph of the Delaunay triangulation. In turn, the Euclidean minimum spanning tree is a subgraph of it, from which it follows that it is a connected graph.

The Urquhart graph, the graph formed by removing the longest edge from every triangle in the Delaunay triangulation, was originally proposed as a fast method to compute the relative neighborhood graph.[11] Although the Urquhart graph sometimes differs from the relative neighborhood graph[12] it can be used as an approximation to the relative neighborhood graph.[13]

References

  1. ^ a b c Toussaint, G. T. (1980), "The relative neighborhood graph of a finite planar set", Pattern Recognition, 12 (4): 261–268, doi:10.1016/0031-3203(80)90066-7.
  2. ^ Jaromczyk, J.W.; Toussaint, G.T. (1992), "Relative neighborhood graphs and their relatives", Proceedings of the IEEE, 80 (9): 1502–1517, doi:10.1109/5.163414.
  3. ^ Supowit, K. J. (1983), "The relative neighborhood graph, with an application to minimum spanning trees", Journal of the ACM, 30 (3): 428–448, doi:10.1145/2402.322386.
  4. ^ Katajainen, Jyrki; Nevalainen, Olli; Teuhola, Jukka (1987), "A linear expected-time algorithm for computing planar relative neighbourhood graphs", Information Processing Letters, 25 (2): 77–86, doi:10.1016/0020-0190(87)90225-0.
  5. ^ a b Jaromczyk, J. W.; Kowaluk, M. (1987), "A note on relative neighborhood graphs", Proc. 3rd Symp. Computational Geometry, New York, NY, USA: ACM, pp. 233–241, doi:10.1145/41958.41983.
  6. ^ Lingas, A. (1994), "A linear-time construction of the relative neighborhood graph from the Delaunay triangulation", Computational Geometry, 4 (4): 199–208, doi:10.1016/0925-7721(94)90018-3.
  7. ^ Jaromczyk, J. W.; Kowaluk, M. (1991), "Constructing the relative neighborhood graph in 3-dimensional Euclidean space", Discrete Applied Mathematics, 31 (2): 181–191, doi:10.1016/0166-218X(91)90069-9.
  8. ^ Agarwal, Pankaj K.; Mataušek, Jiří (1992), "Relative neighborhood graphs in three dimensions", Proc. 3rd ACM–SIAM Symp. Discrete Algorithms, pp. 58–65.
  9. ^ O'Rourke, J. (1982), "Computing the relative neighborhood graph in the and metrics", Pattern Recognition, 15 (3): 189–192, doi:10.1016/0031-3203(82)90070-X.
  10. ^ Lee, D. T. (1985), "Relative neighborhood graphs in the -metric", Pattern Recognition, 18 (5): 327–332, doi:10.1016/0031-3203(85)90023-8.
  11. ^ Urquhart, R. B. (1980), "Algorithms for computation of relative neighborhood graph", Electronics Letters, 16 (14): 556–557, doi:10.1049/el:19800386.
  12. ^ Toussaint, G. T. (1980), "Comment: Algorithms for computing relative neighborhood graph", Electronics Letters, 16 (22): 860, doi:10.1049/el:19800611. Reply by Urquhart, pp. 860–861.
  13. ^ Andrade, Diogo Vieira; de Figueiredo, Luiz Henrique (2001), "Good approximations for the relative neighbourhood graph" (PDF), Proc. 13th Canadian Conference on Computational Geometry.
This page was last edited on 24 March 2024, at 04:43
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.