To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Reciprocal length

From Wikipedia, the free encyclopedia

Reciprocal length or inverse length is a measurement used in several branches of science and mathematics. As the reciprocal of length, common units used for this measurement include the reciprocal metre or inverse metre (symbol: m−1), the reciprocal centimetre or inverse centimetre (symbol: cm−1), and, in optics, the dioptre.

Quantities measured in reciprocal length include:

YouTube Encyclopedic

  • 1/3
    Views:
    1 657 893
    622 126
    510
  • ❤︎² Basic Trigonometry: Sin, Cos, Tan (mathbff)
  • The golden ratio | Introduction to Euclidean geometry | Geometry | Khan Academy
  • Reciprocal Functions

Transcription

Measure of energy

In some branches of physics, the universal constants c, the speed of light, and ħ, the reduced Planck constant, are treated as being unity (i.e. that c = ħ = 1), which leads to mass, energy, momentum, frequency and reciprocal length all having the same unit. As a result, reciprocal length is used as a measure of energy. The frequency of a photon yields a certain photon energy, according to the Planck–Einstein relation, and the frequency of a photon is related to its spatial frequency via the speed of light. Spatial frequency is a reciprocal length, which can thus be used as a measure of energy, usually of a particle. For example, the reciprocal centimetre, cm−1, is an energy unit equal to the energy of a photon with a wavelength of 1 cm. That energy amounts to approximately 1.24×10−4 eV or 1.986×10−23 J.

The energy is inversely proportional to the size of the unit of which the reciprocal is used, and inversely proportional to the number of reciprocal length units. In other words, the higher the quantity of inverse length, the lower the energy. For example, in terms of energy, one reciprocal metre equals 10−2 (one hundredth) as much as a reciprocal centimetre. Five reciprocal metres are five times less energy, or one-fifth as much energy, as one reciprocal metre.

Further reading

  • Barrett, A. J. (11 July 1983). "A two-parameter perturbation series for the reciprocal length of polymer chains and subchains". Journal of Physics A: Mathematical and General. 16 (10): 2321–2330. Bibcode:1983JPhA...16.2321B. doi:10.1088/0305-4470/16/10/027.
This page was last edited on 13 January 2021, at 17:34
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.