To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Rational reconstruction (mathematics)

From Wikipedia, the free encyclopedia

In mathematics, rational reconstruction is a method that allows one to recover a rational number from its value modulo a sufficiently large integer.

YouTube Encyclopedic

  • 1/3
    Views:
    633
    94 552
    6 558
  • 計算機数学I (2016) (13) 有理数の再構成
  • Your Brain as Math - Part 1 | Infinite Series
  • What is Sampling Rate Conversation by a rational factor

Transcription

Problem statement

In the rational reconstruction problem, one is given as input a value . That is, is an integer with the property that . The rational number is unknown, and the goal of the problem is to recover it from the given information.

In order for the problem to be solvable, it is necessary to assume that the modulus is sufficiently large relative to and . Typically, it is assumed that a range for the possible values of and is known: and for some two numerical parameters and . Whenever and a solution exists, the solution is unique and can be found efficiently.

Solution

Using a method from Paul S. Wang, it is possible to recover from and using the Euclidean algorithm, as follows.[1][2]

One puts and . One then repeats the following steps until the first component of w becomes . Put , put z = v − qw. The new v and w are then obtained by putting v = w and w = z.

Then with w such that , one makes the second component positive by putting w = −w if . If and , then the fraction exists and and , else no such fraction exists.

References

  1. ^ Wang, Paul S. (1981), "A p-adic algorithm for univariate partial fractions", Proceedings of the Fourth International Symposium on Symbolic and Algebraic Computation (SYMSAC '81), New York, NY, USA: Association for Computing Machinery, pp. 212–217, doi:10.1145/800206.806398, ISBN 0-89791-047-8, S2CID 10695567
  2. ^ Wang, Paul S.; Guy, M. J. T.; Davenport, J. H. (May 1982), "P-adic reconstruction of rational numbers", SIGSAM Bulletin, New York, NY, USA: Association for Computing Machinery, 16 (2): 2–3, CiteSeerX 10.1.1.395.6529, doi:10.1145/1089292.1089293, S2CID 44536107.
This page was last edited on 8 August 2023, at 18:31
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.