To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Radio science subsystem

From Wikipedia, the free encyclopedia

A radio science subsystem (RSS) is a subsystem placed on board a spacecraft for radio science purposes.

YouTube Encyclopedic

  • 1/5
    Views:
    748
    1 340 440
    1 212 477
    2 428
    2 673
  • On Mars, the amazing design of the radio link between Ingenuity and the Perseverance rover
  • JPL and the Space Age: Triumph at Saturn (Part I)
  • JPL and the Space Age: Triumph at Saturn (Part II)
  • More Mysterious Fast Radio Bursts | SpaceTime with Stuart Gary S21E84 | Astronomy Science Podcast
  • Communicating with NASA's Cassini Spacecraft

Transcription

Function of the RSS

The RSS uses radio signals to probe a medium such as a planetary atmosphere. The spacecraft transmits a highly stable signal to ground stations, receives such a signal from ground stations, or both. Since the transmitted signal parameters are accurately known to the receiver, any changes to these parameters are attributable to the propagation medium or to the relative motion of the spacecraft and ground station.

The RSS is usually not a separate instrument; its functions are usually "piggybacked" on the existing telecommunications subsystem. More advanced systems use multiple antennas with orthogonal polarizations.

Applications

Radio science is commonly used to determine the gravity field of a moon or planet by observing Doppler shift. This requires a highly stable oscillator on the spacecraft, or more commonly a "2-way coherent" transponder that phase locks the transmitted signal frequency to a rational multiple of a received uplink signal that usually also carries spacecraft commands.

Another common radio science observation is in radio occultation, performed as a spacecraft is occulted by a planetary body. As the spacecraft moves behind the planet, its radio signals cuts through successively deeper layers of the planetary atmosphere. Measurements of signal strength and polarization vs time can yield data on the composition and temperature of the atmosphere at different altitudes.

It is also common to use multiple radio frequencies coherently derived from a common source to measure the dispersion of the propagation medium. This is especially useful in determining the free electron content of a planetary ionosphere.

Spacecraft using RSS

Functions

Specifications

  • Given a deep space network (DSN) of receivers and/or transmitters.
  • A Ka-band traveling wave tube amplifier (K-TWTA) amplifies signals to a transmitting antenna to be received by a distal radio telescope.
  • Ka-band translator (KAT) receives signal from a high gain antenna and retransmits the signal back to DSN. In this way the phase and phase-shift resulting from signal modification
  • Ka-band exciter (KEX) it supplies telemetry data.
  • S-band transmitter is used for radio science experiments. The transmitter receives signal from the RFS, amplifies and multiplies the signal, sending a 2290 MHz signal to the antenna.
  • Filter microwave emitter allow only microwaves of a given frequency to be emitted, there is a polarizing element. There are two-bypass filters and a wave-guide. The bypass filters allow different feed polarizations, receiving and transmitting.

References

  1. ^ Cassini-Huygens: Spacecraft-Instruments-Radio Science Subsystem (RSS) Archived 2008-06-17 at the Wayback Machine Ulysess - European Space Agency
  2. ^ Srinivasan DK, Perry ME, Fielhauer KB, Smith DE and Zuber MT. The Radio Frequency Subsystem and Radio Science on the MESSENGER Mission. 2007. Space Science Reviews 131 :557-571doi:10.1007/s11214-007-9270-7
  3. ^ Instruments - RSS: Radio Science Subsystem Cassini-Huygens, ESA
This page was last edited on 3 November 2023, at 02:47
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.